
 1 

Differential Evolution Using a Neighborhood-based 

Mutation Operator 

 
Swagatam Das1, Ajith Abraham2, Uday K. Chakraborty3, and Amit Konar1 

 

1
Department of Electronics and Telecommunication Engineering, Jadavpur University, 

 Kolkata 700032, India 
2Center of Excellence for Quantifiable Quality of Service, Norwegian University of Science and 

Technology, Norway 
3Dept. of Math & Comp. Sc. University of Missouri, 

St. Louis, MO 63121, USA 
swagatamdas19@yahoo.co.in, ajith.abraham@ieee.org, chakrabortyu@umsl.edu, konaramit@yahhoo.co.in 

 
 
 
 
Abstract- Differential Evolution (DE) is well known as a simple and efficient scheme for global 

optimization over continuous spaces. It has reportedly outperformed a few Evolutionary 

Algorithms (EAs) and other search heuristics like the Particle Swarm Optimization (PSO) when 

tested over both benchmark and real-world problems. DE, however, is not completely free from 

the problems of slow and/or premature convergence. This article describes a family of improved 

variants of the DE/target-to-best/1/bin scheme, which utilize the concept of the neighborhood of 

each population member. The idea of small neighborhoods, defined over the index-graph of 

parameter vectors, draws inspiration from the community of the PSO algorithms. The proposed 

schemes balance the exploration and exploitation abilities of DE without imposing serious 

additional burdens in terms of function evaluations.  They are shown to be statistically 

significantly better than or at least comparable to several existing DE variants as well as a few 

other significant evolutionary computing techniques over a test-suite of 24 benchmark functions. 

The paper also investigates the applications of the new DE-variants to two real-life problems 

concerning parameter estimation for frequency modulated sound waves and spread spectrum 

radar poly-phase code design. 
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1 Introduction 

Differential Evolution (DE), proposed by Storn and Price [1-3], is a simple yet powerful algorithm for 
real parameter optimization. Recently, the DE algorithm has become quite popular in the machine 
intelligence and cybernetics communities. It has successfully been applied to diverse domains of 
science and engineering, such as mechanical engineering design [4, 5], signal processing [6], chemical 
engineering [7, 8], machine intelligence, and pattern recognition [9, 10]. It has been shown to perform 
better than the Genetic Algorithm (GA) [11] or the Particle Swarm Optimization (PSO) [12] over 
several numerical benchmarks [13]. Many of the most recent developments in DE algorithm design 
and applications can be found in [14]. Like other evolutionary algorithms, two fundamental processes 
drive the evolution of a DE population: the variation process, which enables exploring different 
regions of the search space and the selection process, which ensures the exploitation of previous 
knowledge about the fitness landscape.   
 
Practical experience, however, shows that DE may occasionally stop proceeding toward the global 
optimum even though the population has not converged to a local optimum or any other point [15]. 
Occasionally, even new individuals may enter the population, but the algorithm does not progress by 
finding any better solutions. This situation is usually referred to as stagnation. DE also suffers from the 
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problem of premature convergence, where the population converges to some local optima of a multi-
modal objective function, losing its diversity.  The probability of stagnation depends on how many 
different potential trial solutions are available and also on their capability to enter into the population 
of the subsequent generations [15]. Like other evolutionary computing algorithms, the performance of 
DE deteriorates with the growth of the dimensionality of the search space as well. There exists a good 
volume of works (a review of which can be found in Section 3), attempting to improve the 
convergence speed and robustness (ability to produce similar results over repeated runs) of DE by 
tuning the parameters like population size NP, the scale factor F, and the crossover rate Cr.  
 
In the present work, we propose a family of variants of the DE/target-to-best/1 scheme  [3, page 140], 
which was also referred to as “Scheme DE2” in the first technical paper on DE [1]. In some DE 
literature this algorithm is referred to as DE/current-to-best/1 [16, 17].  To combine the exploration and 
exploitation capabilities of DE, we propose a new hybrid mutation scheme that utilizes an explorative 
and an exploitive mutation operator, with an objective of balancing their effects. The explorative 
mutation operator (referred to as the local mutation model) has a greater possibility of locating the 
minima of the objective function, but generally needs more iterations (generations). On the other hand, 
the exploitative mutation operator (called by us the global mutation model) rapidly converges to a 
minimum of the objective function. In this case there exists the danger of premature convergence to a 
suboptimal solution. In the hybrid model we linearly combine the two mutation operators using a new 
parameter, called the weight factor. Four different schemes  have been proposed and investigated for 
adjusting the weight factor, with a view to alleviating user intervention and hand tuning as much as 
possible.  
 
Here we would like to mention that although a preliminary version of this work appeared as a 
conference paper in [18], the present version has been considerably enhanced and it differs in many 
aspects from [18]. It critically examines the effects of the global and local neighborhoods on the 
performance of DE and explores a few different ways of tuning of the weight factor (see Section 4) 
used for unification of the neighborhood models. In addition, it compares the performance of the 
proposed approaches with several state-of-the-art DE variants as well as other evolutionary algorithms 
over a test-bed of 24 well-known numerical benchmarks and one real-world optimization problem in 
contrast to [18], which uses only six benchmarks and provides limited comparison results.  
 
The remainder of this paper is organized as follows. In Section 2, we provide a brief outline of the DE 
family of algorithms.  Section 3 provides a short survey of  previous research on improving  the 
performance of DE. Section 4 introduces the proposed family of variants of the DE/target-to-best/1 
algorithm. Experimental settings for the benchmarks and  simulation strategies are explained in Section 
5.  Results are presented and discussed in Section 6. Finally,  conclusions are drawn in Section 7. 

2 The DE Algorithm  

Like any other evolutionary algorithm, DE starts with a population of NP D-dimensional parameter 
vectors representing the candidate solutions. We shall denote subsequent generations in DE 

by max...,1,0 GG = . Since the parameter vectors are likely to be changed over different generations, 

we may adopt the following notation for representing the i-th vector of the population at the current 
generation as: 

                               ].,.....,,,[ ,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
�

                                                        (1) 

For each parameter of the problem, there may be a certain range within which the value of the 
parameter should lie for better search results. The initial population (at 0=G ) should cover the entire 
search space as much as possible by uniformly randomizing individuals within the search space 
constrained by the prescribed minimum and maximum 

bounds: },...,,{ min,min,2min,1min DxxxX =
�

and },...,,{ max,max,2max,1max DxxxX =
�

. Hence we may 

initialize the j-th component of the i-th vector as 
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                      )()1,0( min,max,,min,0,, jjjijij xxrandxx −⋅+= ,                                                (2)                                    

where )1,0(, jirand is a uniformly distributed random number lying between 0 and 1 and is instantiated 

independently for each component of the i-th vector. The following steps are taken next: mutation, 
crossover, and selection (in that order), which are explained in the following subsections. 
 
a) Mutation:   
 

After initialization, DE creates a donor vector GiV ,

�

 corresponding to each population member or 

target vector GiX ,

�

in the current generation through mutation and sometimes using arithmetic 

recombination too.  It is the method of creating this donor vector that differentiates one DE scheme 
from another. Five most frequently referred strategies, implemented in the public-domain DE codes for 
producing the donor vectors (available online at http://www.icsi.berkeley.edu/~storn/code.html) are 
listed below: 
 

                 “DE/rand/1”: ).(
,,,,

321 GrGrGrGi iii XXFXV
����

−⋅+=                                                                   (3) 

                 “DE/best/1”: ).(
,,,,

21 GrGrGbestGi ii XXFXV
����

−⋅+=                                                                (4) 

   “DE/target-to-best/1”:  ).()(
,,,,,,

21 GrGrGiGbestGiGi ii XXFXXFXV
������

−⋅+−⋅+=                                (5) 

           “DE/best/2”:  ).()(
,,,,,,

4321 GrGrGrGrGbestGi iiii XXFXXFXV
������

−⋅+−⋅+=                                    (6) 

            “DE/rand/2”: ).()(
,,,,,,

54321 GrGrGrGrGrGi iiiii XXFXXFXV
������

−⋅+−⋅+=                                      (7) 

 

The indices ir1 , ir2 , i
r3 , ir4 , and i

r5 are mutually exclusive integers randomly chosen from the range [1, 

NP], and all are different from the base index i. These indices are randomly generated once for each 
donor vector. The scaling factor F is a positive control parameter for scaling the difference 

vectors. GbestX ,

�

 is the best individual vector with the best fitness (i.e. lowest objective function value 

for a minimization problem) in the population at generation G. Note that some of the strategies for 
creating the donor vector may be mutated recombinants, for example, equation (5) listed above 

basically mutates a two-vector recombinant: )( ,,, GiGbestGi XXFX
���

−⋅+ . The general convention used 

for naming the various mutation strategies is DE/x/y/z, where DE stands for Differential Evolution, x 
represents a string denoting the vector to be perturbed, y is the number of difference vectors considered 
for perturbation of x, and z stands for the type of crossover being used (exp: exponential; bin: 
binomial). The following section discusses the crossover step in DE. 
 
b) Crossover:        
     

To increase the potential diversity of the population, a crossover operation comes into play after 
generating the donor vector through mutation. The DE family of algorithms can use two kinds of 
crossover schemes - exponential and binomial [1-3]. The donor vector exchanges its components with 

the target vector GiX ,

�

 under this operation to form the trial vector 

],...,,,[ ,,,,3,,2,,1, GiDGiGiGiGi uuuuU =
�

. In exponential crossover, we first choose an integer n 

randomly among the numbers ],1[ D . This integer acts as a starting point in the target vector, from 

where the crossover or exchange of components with the donor vector starts. We also choose another 
integer L from the interval ],1[ D . L denotes the number of components; the donor vector actually 

contributes to the target. After a choice of n and L the trial vector is obtained as:    
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                   =Giju ,,     Gijv ,, ,    for 
DDD

Lnnnj 1,...,1, −++=  

                                     
Gijx ,, ,  for all other ],1[ Dj ∈ ,                                                                           (8)                

where the angular brackets 
D

 denote a modulo function with modulus D. The integer L is drawn 

from ],1[ D  according to the following pseudo-code.                                             

L = 0; 
DO  
{ 
     L = L+1; 
} WHILE (( ))1,0(( Crrand < AND ( DL < )); 

 
‘Cr’ is called the crossover rate and appears as a control parameter of DE just like F. Hence in effect, 
probability (L ≥ υ) = (Cr) υ-1 for any υ > 0. For each donor vector, a new set of n and L must be chosen 
randomly as shown above.  
 
On the other hand, binomial crossover is performed on each of the D variables whenever a randomly 
picked number between 0 and 1 is less than or equal to the Cr value. In this case the number of 
parameters inherited from the donor has a (nearly) binomial distribution. The scheme may be outlined 
as: 

                     Giju ,,   =       Gijv ,,  ,       if ( Crrand ji ≤)1,0(, or )randjj =  

                                           Gijx ,, ,     otherwise,                                                                                    (9)              

where )1,0(, jirand ]1,0[∈ is a uniformly distributed random number, which is called anew for each j-

th component of the i-th parameter vector. ],....,2,1[ Djrand ∈ is a randomly chosen index, which 

ensures that GiU ,

�

gets at least one component from GiV ,

�

. 

 
Fig. 1. Change of the trial vectors generated through the crossover operation described in equation (9) due to 

rotation of the coordinate system. 

   2x  
 2'x  

  GiU ,_2

�

 GiV ,

�

 

   1x  

GiX ,

�

 

GiU ,_1

�

 

1'x  GiU ,_4

�

 

GiU ,_3

�
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The crossover operation described in equation (9) is basically a discrete recombination [3]. Figure 1 

illustrates a two-dimensional example of recombining the parameters of two vectors GiX ,

�

and GiV ,

�

, 

according to this crossover operator, where the potential trial vectors are generated at the corners of a 

rectangle. Note that GiV ,

�

can itself be the trial vector (i.e. GiU ,

�

= GiV ,

�

) when 1=Cr . As can be seen 

from Figure 1, discrete recombination is a rotationally variant operation. Rotation transforms the 
coordinates of both vectors and thus changes the shape of the rectangle as shown in Figure 1. 

Consequently, the potential location of the trial vector moves from the possible set ( GiU ,_1

�

, GiU ,_2

�

) 

to ( GiU ,_3

�

, GiU ,_4

�

). To overcome this limitation, a new trial vector generation strategy ‘DE/current-

to-rand/1’ is proposed in [19], which replaces the crossover operator prescribed in equation (9) with 

the rotationally invariant arithmetic crossover operator to generate the trial vector GiU ,

�

 by linearly 

combining the target vector GiX ,

�

and the corresponding donor vector GiV ,

�

as follows: 

                                ).( ,,,, GiGiGiGi XVKXU
����

−⋅+=                                                  

Now incorporating equation (3) in equation (10) we have: 

                   ),)(( ,,,,,, 321 GiGrGrGrGiGi XXXFXKXU
������

−−⋅+⋅+=  

which further simplifies to: 

                   ),()( ,,
/

,,,, 321 GrGrGiGrGiGi XXFXXKXU
������

−⋅+−⋅+=                                            (10) 

where K is the combination coefficient, which has been shown [19] to be effective when it is chosen 

with a uniform random distribution from [0, 1] and FKF ⋅=/ is a new constant here. 
 
c) Selection:   
     

To keep the population size constant over subsequent generations, the next step of the algorithm calls 
for selection to determine whether the target or the trial vector survives to the next generation i.e. 
at 1+= GG . The selection operation is described as:  

                            1, +GiX
�

,,GiU
�

=        if  )()( ,, GiGi XfUf
��

≤  

                                        ,,GiX
�

=       if  )()( ,, GiGi XfUf
��

> ,                                                            (11)   

where )(Xf
�

is the function to be minimized. So if the new trial vector yields an equal or lower value 

of the objective function, it replaces the corresponding target vector in the next generation; otherwise 
the target is retained in the population. Hence the population either gets better (with respect to the 
minimization of the objective function) or remains the same in fitness status, but never deteriorates. 
The complete pseudo-code of the DE is given below: 
 
Pseudo-code for the DE algorithm family 

 

Step 1. Set the generation number 0=G and randomly initialize a population of NP  

individuals },......,{ ,,1 GNPGG XXP
��

= with ],.....,,,[ ,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
�

 and each 

individual uniformly distributed in the range ],[ maxmin XX
��

, 

where },...,,{ min,min,2min,1min DxxxX =
�

and },...,,{ max,max,2max,1max DxxxX =
�

with

],....,2,1[ NPi = . 

 

Step 2. WHILE the stopping criterion is not satisfied 
             DO 
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               FOR 1=i to NP                                          //do for each individual sequentially 
                 
                Step 2.1 Mutation Step 

                     Generate a donor vector },.......,{ ,,,,1, GiDGiGi vvV =
�

corresponding to the  i-th target 

vector GiX ,

�

 via one of the different mutation schemes of DE (equations (3) to (7)) 

              Step 2.2 Crossover Step 

               Generate a trial vector },.......,{ ,,,,1, GiDGiGi uuU =
�

 for the i-th target vector    

GiX ,

�

through binomial crossover (equation (9)) or exponential crossover (equation (8)) 

or through the arithmetic crossover (equation (10)).    
 

               Step 2.3 Selection Step 

                     Evaluate the trial vector GiU ,

�

 

       IF )()( ,, GiGi XfUf
��

≤ , THEN GiGi UX ,1,

��

=+ , )()( ,1, GiGi UfXf
��

=+  

           IF )()( ,, GbestGi XfUf
��

< , THEN GiGbest UX ,,

��

= , )()( ,, GiGbest UfXf
��

=  

           END IF 
       END IF 

       ELSE GiGi XX ,1,

��

=+ , )()( ,1, GiGi XfXf
��

=+  

                 END FOR 
             

              Step 2.4 Increase the Generation Count 1+= GG  

END WHILE                            

3 A Review of  Previous Work on Improving the DE Algorithm 

Over the past few years researchers have been investigating ways of improving the ultimate 
performance of the DE algorithm by tuning its control parameters. Storn and Price in [1] have 
indicated that a reasonable value for NP could be between 5D and 10D (D being the dimensionality of 
the problem), and a good initial choice of F could be 0.5. The effective value of F usually ranges in 
[0.4, 1].  
 
Gamperle et al. [20] evaluated different parameter settings for DE on the Sphere, Rosenbrock’s and 
Rastrigin’s functions. Their experimental results revealed that the global optimum searching capability 
and the convergence speed are very sensitive to the choice of control parameters NP, F, and Cr. 

Furthermore, a plausible choice of the population size NP is between 3D and 8D, with the scaling 
factor F = 0.6 and the crossover rate Cr in [0.3, 0.9]. Recently, the authors in [16] claim that typically 
0.4 < F < 0.95 with F = 0.9 is a good first choice. Cr typically lies in (0, 0.2) when the function is 
separable, while in (0.9, 1) when the function’s parameters are dependent.  
 
As can be seen from the literature, several claims and counter-claims were reported concerning the 
rules for choosing the control parameters, confusing engineers, who try to solve real-world 
optimization problems with DE. Further, many of these claims lack sufficient experimental 
justification. Therefore researchers consider techniques such as self-adaptation to avoid manual tuning 
of the parameters of DE. Usually self-adaptation is applied to tune the control parameters F and Cr. 

Liu and Lampinen introduced Fuzzy Adaptive Differential Evolution (FADE) [21] using fuzzy logic 
controllers, whose inputs incorporate the relative function values and individuals of successive 
generations to adapt the parameters for the mutation and crossover operation. Based on the 
experimental results over a set of benchmark functions, the FADE algorithm outperformed the 
conventional DE algorithm. In this context, Qin et al. proposed a Self-adaptive DE (SaDE) [22] 
algorithm, in which both the trial vector generation strategies and their associated parameters are 
gradually self-adapted by learning from their previous experiences of generating promising solutions. 
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Zaharie proposed a parameter adaptation strategy for DE (ADE) based on the idea of controlling the 
population diversity, and implemented a multi-population approach [23]. Following the same line of 
thinking, Zaharie and Petcu designed an adaptive Pareto DE algorithm for multi-objective optimization 
and also analyzed its parallel implementation [24]. Abbass [25] self-adapted the crossover rate Cr for 
multi-objective optimization problems, by encoding the value of Cr into each individual and 
simultaneously evolving it with other search variables. The scaling factor F was generated for each 
variable from a Gaussian distribution N (0, 1). 
 
Omran et al. [26] introduced a self-adaptive scaling factor parameter F. They generated the value of Cr 

for each individual from a normal distribution N (0.5, 0.15). This approach (called SDE) was tested on 
four benchmark functions and performed better than other versions of DE. Besides adapting the control 
parameters F or Cr, some researchers also adapted the population size. Teo proposed DE with Self 
Adapting Populations (DESAP) [27], based on Abbass’s self-adaptive Pareto DE [25]. Recently, Brest 
et al. [28] encoded control parameters F and Cr into the individual and evolved their values by using 

two new probabilities 1τ  and 2τ . In their algorithm (called SADE), a set of F values was assigned to 

each individual in the population. With probability 1τ , F is reinitialized to a new random value in the 

range of [0.1, 1.0], otherwise it is kept unchanged. The control parameter Cr, assigned to each 
individual, is adapted in an identical fashion, but with a different re-initialization range of [0, 1] and 

with the probability 2τ . With probability 2τ , Cr takes a random value in [0, 1], otherwise it retains its 

earlier value in the next generation. 
 
Das et al. [29] introduced two schemes for adapting the scale factor F in DE. In the first scheme 
(called DERSF: DE with Random Scale Factor) they varied F randomly between 0.5 and 1.0 in 
successive iterations. They suggested decreasing F linearly from 1.0 to 0.5 in their second scheme 
(called DETVSF: DE with Time varying Scale Factor). This encourages the individuals to sample 
diverse zones of the search space during the early stages of the search. During the later stages, a 
decaying scale factor helps to adjust the movements of trial solutions finely so that they can explore 
the interior of a relatively small space in which the suspected global optimum lies. 
 
DE/rand/1/either-or is a state-of-the-art DE variant described by Price et al. [3, page 118]. In this 

algorithm, the trial vectors that are pure mutants occur with a probability Fp and those that are pure 

recombinants occur with a probability Fp−1 . The scheme for trial vector generation may be outlined 

as: 

          )(
,,,,

321 GrGrGrGi iii XXFXU
����

−⋅+= ,                   if Fi prand <)1,0(  

                   ).2(
,,,, 1321 GrGrGrGr

iiii XXXKX
����

−+⋅+= , otherwise                                                  (12) 

Where, according to Price et al., )1(5.0 +⋅= FK  serves as a good choice of the parameter K for a 

given F.  
 
Rahnamayan et al. have proposed an Opposition-based DE (ODE) [30] that is specially suited for 
noisy optimization problems. The conventional DE algorithm was enhanced by utilizing the opposition 
number-based optimization concept in three levels, namely, population initialization, generation 
jumping, and local improvement of the population’s best member. 
 
Yang et al. [31] proposed a hybridization of DE with the Neighborhood Search (NS), which appears as 
a main strategy underpinning Evolutionary Programming (EP) [32].  The resulting algorithm, known 
as NSDE, performs mutation by adding a normally distributed random value to each target-vector 
component in the following way: 
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                        +=
GrGi iXV

,,
1

��

     )5.0,5.0(., Nd Gi

�

, if 5.0)1,0( <irand  

                                                         δ.,Gid
�

,                 otherwise,                                                      (13)       

where 
GrGrGi ii XXd

,,,
32

���

−=    is the usual difference vector, N(0.5, 0.5) denotes a Gaussian random 

number with mean 0.5 and standard deviation 0.5, and δ denotes a Cauchy random variable with scale 

parameter 1=t . Recently Yang et al. [33] used a Self-adaptive NSDE in the cooperative coevolution 
framework that is capable of optimizing large scale non-separable problems (up to 1000 dimensions). 
They proposed a random grouping scheme and adaptive weighting for problem decomposition and 
coevolution.  Somewhat similar in spirit to the present paper is the study by Yang et al. [34] on self- 
adaptive differential evolution with neighborhood search (SaNSDE). SaNSDE incorporates self-
adaptation ideas from the Qin et al’s SaDE [22] and proposes three self-adaptive strategies: self-
adaptive choice of the mutation strategy between two alternatives, self-adaptation of the scale factor F, 
and self-adaptation of the crossover rate Cr. We would like to point out here that in contrast to Yang et 

al.’s works on NSDE and SaNSDE, we keep the scale factor non-random and use a ring-shaped 
neighborhood topology (inspired by PSO [37]), defined on the index graph of the parameter vectors, in 
order to derive a local neighborhood-based mutation model. Also instead of F and Cr, the weight 
factor that unifies two kinds of mutation models, have been made self-adaptive in one of the variants of 
DE/target-to-best/1 scheme, proposed by us. Section 4 describes these issues in sufficient details.  
 
Noman and Iba [35, 36] proposed the Fittest Individual Refinement (FIR); a crossover-based local 
search method for DE. The FIR scheme accelerates DE by enhancing its search capability through 
exploration of the neighborhood of the best solution in successive generations.  
 
As will be evident from Section 4, the proposed method differs significantly from the works described 
in the last couple of paragraphs. It draws inspiration from the neighborhood topologies used in PSO 
[37]. Similar to DE, PSO has also emerged as a powerful real parameter optimization technique during 
the late 1990s. It emulates the swarm behavior of insects, animals herding, birds flocking, and fish 
schooling, where these swarms search for food in a collaborative manner. A number of significantly 
improved variants of basic PSO have been proposed in recent past to solve both benchmark and real-
world optimization problems, for example, see [38, 39]. Earlier attempts to hybridize DE with different 
operators of the PSO algorithm may be traced to the works of Zhang et al. [40] and Das et al. [41]. 

4 DE with a Neighborhood-based Mutation Operator 

4.1 The DE/target-to-best/1 --- A few Drawbacks  

 
Most of the population-based search algorithms try to balance between two contradictory aspects of 
their performance: exploration and exploitation. The first one means the ability of the algorithm to 
‘explore’ or search every region of the feasible search space while the second denotes the ability to 
converge to the near-optimal solutions as quickly as possible. The DE variant known as DE/target-to-
best/1 (equation (5)) uses the best vector of the population to generate donor vectors.  By ‘best’ we 
mean the vector that corresponds to the best fitness (e.g., the lowest objective function value for a 
minimization problem) in the entire population at a particular generation. The scheme promotes 
exploitation since all the vectors/genomes are attracted towards the same best position (pointed to by 
the ‘best’ vector) on the fitness landscape through iterations, thereby converging faster to that point. 
But as a result of such exploitative tendency, in many cases, the population may lose its global 
exploration abilities within a relatively small number of generations, thereafter getting trapped to some 
locally optimal point in the search space.  
 
In addition, DE employs a greedy selection strategy (the better between the target and the trial vectors 
is selected) and uses a fixed scale factor F (typically in [0.4, 1]).  Thus if the difference vector 

GrGr XX ,, 21

��

− , used for perturbation is small (this is usually the case when the vectors come very 

close to each other and the population converges to a small domain), the vectors may not be able to 
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explore any better region of the search space, thereby finding it difficult to escape large plateaus or 
suboptimal peaks/valleys. Mezura-Montes et al., while comparing the different variants of DE for 
global optimization in [16], have noted that DE/target-to-best/1 shows a poor performance and remains 
inefficient in exploring the search space, especially for multi-modal functions. The same conclusions 
were reached by Price et al.  [3, page 156].  
 
4.2 Motivations for the Neighborhood-based Mutation   

 
A proper trade–off between exploration and exploitation is necessary for the efficient and effective 
operation of a population-based stochastic search technique like DE, PSO etc.  The DE/target-to-
best/1, in its present form, favors exploitation only, since all the vectors are attracted by the same best 
position found so far by the entire population, thereby converging faster towards the same point. 
 
In this context we propose two kinds of neighborhood models for DE. The first one is called the local 

neighborhood model, where each vector is mutated using the best position found so far in a small 
neighborhood of it and not in the entire population. On the other hand, the second one, referred to as 

the global mutation model, takes into account the globally best vector GbestX ,

�

of the entire population 

at current generation G for mutating a population member. Note that DE/target-to-best/1 employs only 
the global mutation strategy. 
 
A vector’s neighborhood is the set of other parameter vectors that it is connected to; it considers their 
experience when updating its position. The graph of inter-connections is called the neighborhood 
structure. Generally, neighborhood connections are independent of the positions pointed to by the 
vectors. In the local model, whenever a parameter vector points to a good region of the search space, it 
only directly influences its immediate neighbors. Its second degree neighbors will only be influenced 
after those directly connected to them become highly successful themselves. Thus, there is a delay in 
the information spread through the population regarding the best position of each neighborhood. 
Therefore, the attraction to specific points is weaker, which prevents the population from getting 
trapped in local minima. We would like to mention here that vectors belonging to a local 

neighborhood are not necessarily local in the sense of their geographical nearness or similar fitness 
values. As will be seen in the next section, the overlapping neighborhoods have been created in DE 
according to the order of the indices of the population members, following the neighborhood models in 
PSO.  
 
Finally we combine the local and the global model using a weight factor that appears as a new 
parameter in the algorithm. The weight factor may be tuned in many different ways. In what follows 
we describe these issues in sufficient details.  Note that the neighborhoods of different vectors were 
chosen randomly and not according to their fitness values or geographical locations on the fitness 
landscape, following the PSO philosophy [37]. This preserves the diversity of the vectors belonging to 
the same neighborhood. 
  
4. 3 The Local and Global Neighborhood-based mutations in DE   

 

Suppose we have a DE population ],....,,[ ,,2,1 GNPGGG XXXP
���

=  where each 

GiX ,

�

),...,2,1( NPi = is a D-dimensional parameter vector. The vector indices are sorted only 

randomly (as obtained during initialization) in order to preserve the diversity of each neighborhood. 

Now for every vector GiX ,

�

we define a neighborhood of radius k (where k is a non-zero integer from 0 

to 2)1( −NP , as the neighborhood size must be smaller than the population size, i.e. NPk ≤+12 ), 

consisting of vectors GkiGiGki XXX ,,, ,...,,..., +−

���

. We assume the vectors to be organized on a ring 

topology with respect to their indices, such that vectors GNPX ,

�

and GX ,2

�

are the two immediate 



 10 

neighbors of vector GX ,1

�

. The concept of local neighborhood is schematically illustrated in Figure 2. 

Note that the neighborhood topology is static and has been defined on the set of indices of the vectors. 
Although various neighborhood topologies (like star, wheel, pyramid, 4-clusters, and circular) have 
been proposed in the literature for the PSO algorithms [42], after some initial experimentation over 
numerical benchmarks, we find that in the case of DE (where the population size is usually larger than 
in the case of PSO) the circular or ring topology provides best performance compared to other salient 
neighborhood structures.  
 
For each member of the population a local donor vector is created by employing the best (fittest) 
vector in the neighborhood of that member and any two other vectors chosen from the same 
neighborhood. The model may be expressed as: 

                    )()( ,,,,_,, GqGpGiGbestnGiGi XXXXXL
i

������

−⋅+−⋅+= βα ,                                              (14)            

where the subscript n_besti indicates the best vector in the neighborhood of GiX ,

�

 and 

],[, kikiqp +−∈ with iqp ≠≠ . Similarly the global donor vector is created as: 

                 )()( ,,,,_,, 21 GrGrGiGbestgGiGi XXXXXg
�����

�

−⋅+−⋅+= βα ,                                                (15) 

where the subscript g_best indicates the best vector in the entire population at generation G and 

],1[, 21 NPrr ∈ with irr ≠≠ 21 . α and β are the scaling factors. 

 
Note that in equations (14) and (15), the first perturbation term on the right hand side (the one 
multiplied byα ) is an arithmetical recombination operation, while the second term (the one multiplied 
by β ) is the differential mutation. Thus in both the global and local mutation models, we basically 

generate mutated recombinants, not pure mutants.   

 
 

Fig. 2. The ring topology of neighborhood in DE. The dark spheres indicate a neighborhood of radius 2 of the i-th 
population member where i = 9. 

 
Now we combine the local and global donor vectors using a scalar weight )1,0(∈w  to form the 

actual donor vector of the proposed algorithm: 

                                          GiGiGi LwgwV ,,, ).1(.
�

�

�

−+= .                                                                 (16) 

Clearly, if w = 1and in addition F== βα , the donor vector generation scheme in (16) reduces to 

that of DE/target-to-best/1. Hence the latter may be considered as a special case of this more general 
strategy involving both global and local neighborhood of each vector synergistically. From now on, we 
shall refer to this version as DEGL (DE with Global and Local neighborhoods). The rest of the 

GX ,1

�

 

GNPX ,

�

 

GX ,2

�

 

GiX ,

�

 

GiX ,1−

�

 

GiX ,2−

�

 

GiX ,1+

�

 

GiX ,2+

�

 



 11 

algorithm is exactly similar to DE/rand/1/bin. DEGL uses a binomial crossover scheme and follows the 
pseudo-code given in Section 3. 
 
 Note that in each generation, the vectors belonging to a DE population are perturbed sequentially. If a 

target vector GiX ,

�

is replaced with the corresponding trial vector GiU ,

�

, the neighborhood-best 

Gbestn i
X ,_

�

and the globally best vector GbestgX ,_

�

may also be updated by GiU ,

�

, provided the latter 

yields a lower value of the objective function. In Section 4.5, we discuss the additional computational 
complexity of updating the neighborhood-best vectors in DEGL after the replacement of each target 
vector in a generation.  
 

4. 4 Control Parameters in DEGL 

 
DEGL introduces four new parameters: ,,, wβα and the neighborhood radius k. Among them α and 

β are playing the same role as the constant F in (5). Thus, in order to reduce the number of parameters 

further, we take F== βα . The most crucial parameter in DEGL is perhaps the weight factor w, 

which controls the balance between the exploration and exploitation capabilities. Small values of w 
(close to 0) in (16) favor the local neighborhood component, thereby resulting in better exploration. On 
the other hand, large values (close to 1) favor the global variant component, promoting exploitation. 
Therefore, values of w around the middle point, 0.5, of the range [0, 1] result in the most balanced 
DEGL versions. However, such balanced versions do not take full advantage of any special structure 
of the problem at hand (e.g., uni-modality, convexity etc.). In such cases, weight factors that are biased 
towards 0 or 1 may exhibit better performance. Moreover, on-line adaptation of w during the execution 
of the algorithm can enhance its performance. Optimal values of the weight factor will always depend 
on the problem at hand. We considered three different schemes for the selection and adaptation of w to 
gain intuition regarding DEGL’s performance and we describe them in the following paragraphs. 
 
1) Increasing Weight Factor: All vectors have the same weight factor which is initialized to 0 and is 
increased up to 1 during the execution of the algorithm. Thus, exploration is favored in the first stages 
of the algorithm’s execution (since w = 0 corresponds to the local neighborhood model) and 
exploitation is promoted at the final stages, when w assumes higher values. Let G denote the 

generation number, Gw   the weight factor at generation G, and Gmax the maximum number of 

generations.  We considered two different increasing schedules in our study: 
 
     A) Linear Increment: w is linearly increased from 0 to 1: 

                                                    
maxG

G
wG = .                                                                                       (17) 

     B) Exponential Increment: The weight factor increases from 0 to 1 in an exponential fashion as 
follows: 

                                            1)2ln(.exp
max

−







=

G

G
wG

.                                                                      (18) 

       This scheme results in slow transition from exploration to exploitation in the early stages of the 
algorithm’s execution, but exhibits faster transition in the later stages. 

          
2) Random Weight Factor: In this scheme the weight factor of each vector is made to vary as a 

uniformly distributed random number in (0, 1) i. e. )1,0(~, randw Gi . Such a choice may decrease 

the convergence speed (by introducing more diversity). 
 
3) Self Adaptive Weight Factor: In this scheme, each vector has its own weight factor. The factor is 
incorporated in the vector as an additional variable, augmenting the dimension of the problem. Thus, a 

generation now consists of vectors },{ ,,, GiGiGi SXa
��

�

= where }{ ,, GiGi wS =
�

and Giw , is the weight 
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factor for vector GiX ,

�

. During the initialization phase of DE, Giw , is randomly initialized in (0.0, 1.0). 

Next, while evolving a vector Gia ,

�

, at first local and global mutant vectors GiL ,

�

and Gig ,

�

are formed 

for GiX ,

�

 following equations (14) and (15). The sub-vector S
�

undergoes global mutation only and 

weight factors perturbing S
�

 come from the same population members Gra ,1

�

and Gra ,2

�

, which were 

also used to form Gig ,

�

. The mutation of Giw , leads to the formation of a new trial weight factor 

/
,Giw according to the following equation: 

                  ).().( ,,,,_,
/
, 21 GrGrGiGbestgGiGi wwFwwFww −+−+= ,                                  (19) 

where, Gbestgw ,_  is the weight factor associated with the best parameter vector GbestgX ,_

�

. The value 

of the newly formed /
,Giw is restricted to the range [0.05, 0.95] in the following way:                                              

                      if 95.0/
, >Giw , 95.0/

, =Giw ; 

                      else if ,05.0/
, <Giw  05.0/

, =Giw ,                                                                      (20) 

/
,Giw is then used to combine GiL ,

�

and Gig ,

�

 according to equation (16) and this leads to the formation 

of the new donor parameter vector GiV ,

�

. The donor vector thus formed exchanges its components with 

GiX ,

�

following the binomial crossover and results in the production of the trial vector GiU ,

�

. Note that 

the weight factor does not undergo crossover. Now, the newly formed weight factor is promoted to the 

next generation only if GiU ,

�

 yields an equal or lower objective function value as compared to GiX ,

�

,  

i. e., 

      }}{,{ /
,1,,1,1, GiGiGiGiGi wSUXa === +++

���

�

, if )()( ,, GiGi XfUf
��

≤  

       }}{,{ ,1,,1,1, GiGiGiGiGi wSXXa === +++

���

�

, otherwise.                                                    (21) 

 
The process is repeated sequentially for each vector in a generation. Note that the weight factors 
associated with the neighborhood-best and globally best vectors are not updated every time a trial 
vector replaces the corresponding target. The weight factor for a parameter vector is changed only once 
according to equations (19) and (20) in each generation. According to the self-adaptation scheme, the 

dynamics of DEGL are allowed to determine the optimal Giw ,  for each vector, individually, capturing 

any special structure of the problem at hand. 
 

Finally we would like to point out that a proper selection of the neighborhood size affects the trade–off 
between exploration and exploitation. However, there are no general rules regarding the selection of 
neighborhood size, and it is usually based on the experience of the user. The effect of neighborhood 
size on the performance of DEGL has been further investigated in Section 6.5. 
 
4. 5 Runtime Complexity of DEGL – a Discussion 

 
Runtime-complexity analysis of the population-based stochastic search techniques like DE, GA etc. is 
a critical issue by its own right.  Following the works of Zielinski et al. [43] we note that the average 
runtime of a standard DE algorithm usually depends on its stopping criterion.  While computing the 
run-time complexity, we usually take into account the fundamental floating-point arithmetic and 
logical operations performed by an algorithm [44]. We may neglect very simple operations like 
copy/assignment etc. as these are merely data-transfer operations between the ALU and/or CPU 
registers and hardly require any complex digital circuitry like adder, comparator etc. [44, 45].  Now, in 
each generation of DE, a loop over NP is conducted, containing a loop over D. Since the mutation and 
crossover operations are performed at the component level for each DE vector, the number of 
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fundamental operations in DE/rand/1/bin is proportional to the total number of loops conducted until 
the termination of the algorithm. Thus, if the algorithm is stopped after a fixed number of generations 

Gmax, then the runtime complexity is )( maxGDNPO ⋅⋅ .  

 
For DE/target-to-best/1, runtime complexity of finding the globally best vector depends only on 
comparing the objective function value against the single best vector’s objective function value. Note 
that the best objective function evaluation value must be upgraded for each newly generated trial 
vector, if it replaces the target vector. Now that means in the worst possible case (when the target 
vector is always replaced by the trial vector), this is done maxGNP ⋅ times. Thus, the overall runtime 

remains )()),(max( maxmaxmax GDNPOGDNPGNPO ⋅⋅=⋅⋅⋅ . 

 
In DEGL, besides the globally best vector, we have to take into account the best vector of each 
neighborhood as well. Each individual vector is endowed with a small memory, which can keep track 
of the best vector in its neighborhood and the corresponding objective function value. At the very 
onset, once all the vectors are initialized, a search is performed to detect the neighborhood-best for 
each individual. Note that this search is performed only once at 0=G . In subsequent generations, 
these locally best vectors only need to be updated in the memory of the neighboring vectors. This is 
just like the updating phase of the globally best vector in DE/target-to-best/1 according to step 2.3 of 
the DE pseudo-code provided earlier. Now let us try to estimate the cost of the initial search. Note that 
the neighborhoods in DEGL are actually overlapping in nature (on the index-graph) and this is 
illustrated in Figure 3. Any two adjacent vectors (with respect to their indices) will have 

kk 22112 =−++  number of common neighbors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The overlapping of neighborhoods in DEGL. 
Suppose )( ,Gik XN

�

indicates the set of vectors belonging to the immediate neighborhood of radius k 

for the vector GiX ,

�

.  Then evidently the cardinality of both the sets )()( ,1, Gi

c

kGik XNXN +∩
��

and 

)()( ,1, GikGi

c

k XNXN +∩
��

is exactly 1 (where c

kN stands for complement of the set kN ). We observe 

that )()( ,1,, Gi
c
kGikGki XNXNX +− ∩∈
���

  and )()( ,1,,1 GikGi
c
kGki XNXNX +++ ∩∈

���

. Now we start by 

detecting the best vector of the neighborhood of any population member, say GiX ,

�

 and call 

it Gbestn i
X ,_

�

. This is equivalent to finding the lowest entry from an array of 12 +k  numbers (objective 

  GX ,1

�

 

     GNPX ,

�

 

Neighborhood  

GiX ,

�

 

  GX ,2

�

 GiX ,

�

 

GiX ,1+

�

 

Neighborhood of 

GiX ,1+

�

 

Region of  
Overlap 
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function values) and requires k2 number of comparisons. Next, to calculate the best vector in the 

neighborhood of GiX ,1+

�

, if GkiGbestn XX
i ,,_ −≠

��

 then we simply need to compare the objective function 

values of GkiX ,1++

�

and Gbestn i
X ,_

�

in order to determine Gbestn i
X ,_ 1+

�

. This requires only one 

comparison. But if unfortunately GkiGbestn XX
i ,,_ −=

��

, we shall have to find the neighborhood best of 

GiX ,1+

�

by taking its k2 neighbors into account and this requires )(kO runtime. Hence in the worst 

possible case (when the current neighborhood’s best vector is always excluded from the serially next 
vector’s neighborhood) searching the best vectors of all the neighborhoods is completed in 

)( kNPO ⋅ time.  

 
Once the search for all neighborhood-bests is finished, in subsequent generations, the best vector in the 

neighborhood of GiX ,

�

 is updated only if a newly generated trial vector GiU ,

�

 replaces the target vector 

GiX ,

�

 and in addition to that )()( ,_, GbestnGi i
XfUf
��

< . It is possible that Gbestn i
X ,_

�

differs from 

Gbestn i
X ,_ 1+

�

 i.e. two vectors, adjacent on the index graph, may have distinct neighborhood-best 

vectors. This happens when the best vector in the neighborhood of GiX ,1+

�

 is GkiX ,1++

�

. Under this 

condition, it is possible that GiU ,

�

is better than Gbestn i
X ,_

�

but not better than Gbestn i
X ,_ 1+

�

. Hence in 

order to update the best vectors in the memories of all the neighbors of GiX ,

�

(when 

)()( ,_, GbestnGi i
XfUf
��

< is satisfied) we have to compare the objective function values of GiU ,

�

 and 

the neighborhood-bests in the memories of k2 neighbors of GiX ,

�

. Thus in the worst possible case, 

updating of all the local best vectors in the memories of the neighbors of each vector requires 
)( kNPO ⋅ comparisons in each generation. Evidently, over maxG generations, the number of additional 

comparisons necessary is )( maxGkNPO ⋅⋅ . This implies that the worst case complexity of DEGL is 

actually )),(max( maxmax GDNPGkNPO ⋅⋅⋅⋅ . Now, the asymptotic order of complexity for DEGL 

remains )( maxGDNPO ⋅⋅ if Dk ≤ . Please note that this condition is usually satisfied when DEGL 

is applied to the optimization of higher dimensional functions. For example, the usual population size 
for DE is DNP 10= . If the neighborhood size is approximately 10% of the population size (which, as 
can be seen later, provides reasonably good results with DEGL), we have 

2

1
)1.0(12

−
=⇒=⋅=+

D
kDNPk with 1>D . Clearly, in this case we have Dk ≤ . Simple 

algebraic calculations show  that this condition holds true if the neighborhood size is below 20% of the 
population size NP and 1>D . Hence, we can say that under such conditions, 

)()),(max( maxmaxmax GDNPOGDNPGkNPO ⋅⋅=⋅⋅⋅⋅ and thus DEGL does not impose any serious 

burden on the runtime complexity of the existing DE variants.      
 

In order to validate the arguments made above, we provide in Table 1 the results of code-function 
profiling for our implementations of classical DE (DE/rand/1/bin) and DEGL (with random weight 
factor) using the profiler available with MS Visual C++ 6.0.    Both the algorithms were coded in the C 
language and run on the simple 50-dimensional sphere function ( 1f in the list of benchmarks provided 

in Table 4). The least complex sphere function was chosen so that most of the CPU time may be spent 
on the DE operators and not on function evaluations. Here our primary objective is to observe what 
percentage of the total CPU time is used by the evolutionary operators of DEGL and DE/rand/1/bin. 
Both algorithms use the same prime modules or code-functions: init_pop (for initializing population), 
mutate_vector (for performing mutation and creating donor vector), recombine (to perform crossover 
and create the trial vector), select_and_update (to compare the objective function values of trial and 
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target vectors and in DEGL also to update the neighborhood bests if for the i-th vector, the condition 

)()( ,_, GbestnGi i
XfUf
��

< holds), DE_Operator (module that calls the functions mutate_vector, 

recombine, and select_and_update for each vector sequentially), evaluate_cost (function that evaluates 
the objective function for a parameter vector), and the main. The programs were run on a Pentium IV, 
2.2 GHz PC, with 512 KB cache and 2 GB of main memory in Windows Server 2003 environment. In 
Table 1 we provide the code function profiling results as means (with standard deviations in 
parentheses) of 1000 runs of the programs, each run continued up to 105  cost function evaluations 
(FEs).  
 

Table 1. Code-function runtime profiles for DE/rand/1/bin and DEGL 
 

Code-function runtime as  % of CPU time  
Algorithm 

 
 

Total 

execution 

time (in 

milliseconds) 

init_pop mutate_ 

vector 

recombine select_and 

_update 

DE_operator evaluate_ 

cost 

main 

DE/rand/
1/bin 

9382.703 

(1825.335) 

0.122 

(0.0051) 

16.728 

(0.628) 

29.661 

(1.481) 

8.726 

(7.335) 

28.824 

(3.561) 

13.721 

(2.727) 

2.018 

(0.114) 

DEGL 9739.684 

(1473.627) 

0.109 

(0.0046) 

15.431 

(0.937) 

16.362 

(2.771) 

16.839 

(6.361) 

36.836 

(1.663) 

12.954 

(1.638) 

1.469 

(0.118) 

 
Table 1 shows that, as expected, the total execution time for DEGL is only marginally higher than that 
for DE/rand/1/bin. This is because around 16.9% of the total CPU time is consumed by the 
select_and_update function in DEGL, due to the extra comparisons required for updating the 
neighborhood-bests.  However, if we select a stopping criterion based on a threshold objective function 
value, instead of the stopping criterion based on maximum number of FEs, DEGL can even take less 
computation time as compared to DE/rand/1/bin in some cases. This is because DEGL can attain the 
threshold objective function value much quicker, consuming significantly smaller number of FEs, due 
to the better trade-off between exploration and exploitation abilities achieved by its neighborhood-
based mutation operators. This fact has been illustrated by providing, in Tables 2 and 3, the mean 
processor-time taken by both the algorithms for both stopping criteria over five most popular 
benchmark functions used for testing the evolutionary algorithms.  Note that both the algorithms start 
from the same initial population and run under the same software and hardware platforms. All the 
numerical benchmarks dealt in here are in 25 dimensions, have their true optima at 0.00, and for all of 
them the target threshold value was set at 1.00e-05 in Tales 2 and 3. A detailed description of these 
functions can be found in Table 4 in the following section. Each result is the average of 50 independent 
runs.  
 
We would like to point out that, in the evolutionary computing literature, comparison of the 
computational costs of various evolutionary algorithms is usually performed on the basis of the number 
of FEs they take to reach a predefined function-value. Processor time cannot serve as a reliable metric 
in this context, because first, it is not independent of the hardware and software platforms used and 
second, it may provide some unfair advantage to algorithms that use lower computational overheads. 
In addition, the processor time depends on the style of coding an algorithm [46]. The advantage of 
measuring the runtime complexity by counting the number of FEs is that the correspondence between 
this measure and the processor time becomes stronger as the function complexity increases. In Section 
6, we compare the computational cost and convergence speed of a number of DE-variants using this 
measure. The tables included in this section are intended only to provide an approximate feel of the 
relative time-complexities of DEGL and classical DE.  
 
Table 2 shows that when DEGL and DE/rand/1/bin are run for the same number of FEs (corresponding 
to the same number of generations for both, as they have the same population size), the processor time 
required by the former is slightly higher than that of the latter. Table 3, however, indicates that DEGL 
may reach the predefined threshold value with less   processor time as compared to DE/rand/1/bin.  
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Table 2. A comparison of absolute run-times of DEGL and DE/rand/1/bin, when both the algorithms were run for 
a fixed number of FEs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. A comparison of absolute run-times of DEGL and DE/rand/1/bin, when both the algorithms were run 
until they attain a pre-defined objective function value. 

 

 

 

 

 

 

 

 

 

 

 

5. Experimental Set-up 

5.1 Benchmark Functions  
 
We have used a test-bed of twenty-one traditional numerical benchmarks (Table 4) [47] and three 
composition functions from the benchmark problems suggested in CEC 2005 [48] to evaluate the 
performance of the new DE-variant. The 21 traditional benchmarks described by Yao et al. have been 

reported in Table 4 where D represents the number of dimensions. For 131 ff − we have tested for D = 

25 to 100 in steps of 25. Among these benchmarks, functions 131 ff −  are multi-dimensional 

problems. Functions 51 ff − are uni-modal (there is some recent evidence [49] that f5 is multi-modal 

for D > 3). Function 6f  is a step function with one minimum and is discontinuous. Function 7f  is a 

noisy quartic function, where random [0, 1) is a uniformly distributed random number in [0, 1).  
 

Mean processor time (in milliseconds) and 

standard deviation (in parentheses) 

 

Function 

DE/rand/1/bin DEGL 

Step function (f6) 3692.84 

(688.25) 

3973.38 

(827.51) 

Rosenbrock’s 

function (f5) 

6726.57 

(1425.53) 

7061.48 

(1930.51) 

Rastrigin’s function 

(f9) 

5883.54 

(629.63) 

6273.38 

(447.23) 

Ackley’s function 

(f11) 

5094.68 

(1624.83) 

5268.46 

(324.68) 

Griewank’s 

function (f12) 

5635.92 

(1023.35) 

6163.28 

(729.46) 

Mean processor time (in milliseconds) and 

standard deviation (in parentheses) 

 

Function 

 
Threshold 
objective-

function value to 
reach 

DE/rand/1/bin DEGL 

Step function (f6) 1.00-05 3022.84 

(271.22) 

2873.38 

(712.58) 

Rosenbrock’s function (f5) 1.00-05 5718.92 

(1425.53) 

5448.37 

(1628.31) 

Rastrigin’s function (f9) 1.00-05 2483.56 

(442.67) 

1682.94 

(538.19) 

Ackley’s function (f11) 1.00-05 839.68 

(154.41) 

692.70 

(32.61) 

Griewank’s function (f12) 1.00-05 4836.29 

(1023.35) 

4667.25 

(1416.47) 
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 Functions 138 ff − are multi-modal with the number of local minima increasing exponentially with 

the problem dimension [47]. They apparently belong to the most difficult class of problems for many 

optimization algorithms. Functions 2114 ff −  are low-dimensional functions which have only a few 

local minima. For uni-modal functions, the convergence rates of the DE algorithms are more 
interesting than the final results of optimization as there are other methods which are specifically 
designed to optimize uni-modal functions. For multi-modal functions, the final results are much more 
important since they reflect an algorithm’s ability of escaping from poor local optima and locating a 

good near-global optimum. We omitted 19f  and 20f  from Yao et al.’s study [47] because of 

difficulties in obtaining the definitions of the constants used in these functions. 
 

The three composition functions )(18 Xf
�

, )(19 Xf
�

, and )(21 Xf
�

, taken from CEC 2005 

benchmarking problems [48], are here marked as CF1, CF2, and CF3 respectively. All of them are 
non-separable, rotated, and multi-modal functions containing a large number of local optima. For all of 

them the search range is DX ]5,5[−∈
�

. The global optimum of both CF1 and CF2 is 

10)( * =Xf
�

and that for CF3 is 360)( * =Xf
�

. The detailed principle of the composite functions is 

given in [48]. 
 

For the generalized penalized functions 12f  and 13f , in Table 1, note that  

                                 ),,,( mkaxu i  = m

i axk )( − ,      if  axi >  

                                                           = 0,                        if axa i ≤≤−  

                                                           = m

i axk )( −− ,   if  axi −<  

and                           )1(
4

1
1 ii xy ++= . 

Values of the other constants used in the expressions of the benchmark functions can be found in [47].  
 
5.2 Other Optimization Problems Considered 
 

In this section we describe two interesting real-world problems that have been used to test the efficacy 
of the DEGL family.  The problems are selected according to the level of difficulty that they present to 
the proposed algorithms.  
 

5.2.1 The Spread Spectrum Radar Poly-phase Code Design Problem 

 
A famous problem of optimal design arises in the field of spread spectrum radar poly-phase codes [50]. 
Such a problem is very well-suited for the application of global optimization algorithms like DE.  The 
problem can be formally stated as: 

                    Global min )(Xf
�

= )}(),....,(max{ 21 XX m

��

ϕϕ ,                                                       (22) 

                where },...,1,20|),....,{( 1 DjxxxX j

D

D =≤≤ℜ∈= π
�

  and 12 −= Dm , 

with                ),cos()(
1|12|

12 ∑ ∑
= −−−=

− =
D

ij

j

jik

ki xX
�

ϕ            Di ,...,2,1=  

                       ),cos(5.0)(
1 1|12|

2 ∑ ∑
+= −−−=

+=
D

ij

j

jik

ki xX
�

ϕ   1,...,2,1 −= Di  

                       ),()( XX iim

��

ϕϕ −=+                        mi ,...,2,1= .                                    (23) 

 
According to [50] the above problem has no polynomial time solution. The objective function for D = 
2 is shown in Figure 4. 
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Table 4: 21 Traditional Benchmark Functions [47] 

Function D Search Range Optimum Value 

∑
=

=
D

i

i
xXf

1

2
1 )(
�  25, 50, 75,  

and 100 
100100 ≤≤−

i
x  0)0(

1
=

�

f  

∏∑
==

+=
D

i

i

D

i

i xxXf

11
2 )(
�  25, 50, 75,  

and 100 
1010 ≤≤−

i
x  0)0(

2
=

�

f  

2

1 1
3 )()( ∑ ∑

= =

=
D

i

i

j

jxXf
�  25, 50, 75,  

and 100 
100100 ≤≤−

i
x  0)0(

3
=

�

f  

DixXf i ≤≤= 1|,|max)(4

�

 25, 50, 75,  
and 100 

100100 ≤≤−
i

x  0)0(
4

=
�

f  

])1()(100[)( 222
1

1
15 −+−= ∑

−

=

+ ii

D

i

i xxxXf
�  

25, 50, 75,  
and 100 

3030 ≤≤−
i

x  0)1(
5

=
�

f  

 ( )∑
=

+=
D

i

ixXf
1

2
6 5.0)(
�  25, 50, 75,  

and 100 
100100 ≤≤−

i
x  

2

1

2

1
,0)(6 <≤−= ippf

�

 

[ )1,0).()(
1

4
7 randxixf

D

i

i += ∑
=

�  25, 50, 75,  
and 100 

28.128.1 ≤≤−
i

x

 

0)0(
7

=
�

f  

)||sin(.)(
1

8 i

D

i

i xxXf ∑
=

−=
�  25, 50, 75,  

and 100 
500500 ≤≤−

i
x  3.41898)97.420(8 −=f  

for D = 100  

]10)2cos(10[)(
1

2
9 +−= ∑

=
i

D

i

i xxxf π
 25, 50, 75,  

and 100 
12.512.5 ≤≤−

i
x

 

0)0(
9

=
�

f  

ex
D

x
D

Xf

D

i

i

D

i

i

++








−













−−=

∑

∑

=

=

202cos
1

exp

1
2.0exp20)(

1

1

2
10

π

�  25, 50, 75,  
and 100 

3232 ≤≤−
i

x  0)0(
10

=
�

f  

∏∑
==

+−=
D

i

i
D

i

i
i

x
xXf

11

2
11 1)cos(

4000

1
)(
�

 

25, 50, 75,  
and 100 

600600 ≤≤− ix  0)0(
11

=
�

f  

)4,100,10,(})1(

)](sin101[.)1()(sin10{)(

1

2

1
2

1

1

2
1

2
12

∑

∑

=

+

−

=

+−+

+−+=

D

i

iD

i

D

i

i

xuy

yxy
D

Xf ππ
π�  25, 50, 75,  

and 100 
5050 ≤≤−

i
x  0)1(

12
=−f  

)4,100,5,()}2(sin1){1(

)]3(sin1.[)1()3({sin1.0)(

1

2

1
22

1

1
1

2
13

∑

∑

=

+

−

=

++−+

+−+=

D

i

inD

i

D

i

i

xuxx

xxxXf

π

ππ
�

 
25, 50, 75,  

and 100 
5050 ≤≤−

i
x  

1428.1

)76.4,1,...,1(
13

−=

−f  

16
25

1

1

0
14 ))(1(

500

1
()( −

= =

∑ ∑ −+++=
j i

iji axjXf
�  2 54.6554.65 ≤≤− ix  

998.0

)95.31(
14

=

−f  

2

32
2

1
2

0
10

0
15 )

)(
()(

xxbb

xbbx
aXf

ii

ii

i

i
++

+
−= ∑

=

�  
4 55 ≤≤−

i
x  

0003075.0

)1358.0,1231.0,1908.0,1928.0(15

=

f

 

4
1

2
1

10
6

0
4
0

2
016

44

3

1
1.24)(

xx

xxxxxXf

+−

++−=
�  2 55 ≤≤−

i
x  

0316.1

)71.0,09.0(
16

−=

−f  

10)cos()
8

1
1(10

)6
5

4

1.5
()(

0

2
0

2
02117

+−

+−+−=

x

xxxXf

π

ππ

�  2 55 ≤≤−
i

x  

398.0

)47.2,42.9(
17

=

f  

)}273648123218(

)32(30)}{3614

31419()1(1{)(

2
1101

2
00

2
10

2
1101

2
00

2
1018

xxxxxx

xxxxxx

xxxxXf

+−++−

−++−−

+−+++=
�

 2 22 ≤≤−
i

x  
3

)00.1,0549.1(
18

=

−ef  

 

1
5

1
19 ))()(()( −

=

+−−−= ∑ ii

T

i

i

caXaXXf
�

�

�

��  4 1010 ≤≤−
i

x  1532.10)4(19 −=
�

f  

1
7

1
20 ))()(()( −

=

+−−−= ∑ ii

T

i

i

caXaXXf
�

�

�

��  4 1010 ≤≤−
i

x  4029.10)4(20 −=
�

f  

1
10

1
21 ))()(()( −

=

+−−−= ∑ ii

T

i

i

caXaXXf
�

�

�

��  4 1010 ≤≤−
i

x  5364.10)4(21 −=
�

f  



 19 

 
                                                     
 

 

 

 

 

 

 

 

 

                                               

 

                                                   Fig. 4. )(Xf
�

of equation (22) for D = 2. 

 

5.2.2 Application to Parameter Estimation for Frequency-Modulated (FM) Sound Waves 

 
Frequency-modulated (FM) sound synthesis plays an important role in several modern music-systems. 
This section describes an interesting application of the proposed DE algorithms to the optimization of 
parameters of an FM synthesizer. A few related works that attempt to estimate parameters of the FM 
synthesizer using the genetic algorithm can be found in [51, 52]. Here we introduce a system that can 
automatically generate sounds similar to the target sounds. It consists of an FM synthesizer, a DE 
optimizer, and a feature extractor. The system architecture is shown in Figure 5. The target sound is a 
.wav file. The DE algorithm initializes a set of parameters and the FM synthesizer generates the 
corresponding sounds. In the feature extraction step, the dissimilarities of features between the target 
sound and synthesized sound are used to compute the fitness value. The process continues until 
synthesized sounds become very similar to the target. 
 
The specific instance of the problem discussed here involves determination of six real parameters: 

},,,,,{ 332211 ωωω aaaX =
�

of the FM sound wave given by equation (24) for approximating it to 

the sound wave given in (25) where 1002πθ = . The parameters are defined in the range [-6.4, 

+6.35].  The formula for the estimated sound wave and the target sound wave may be given as: 

              )))..sin(...sin(...sin(.)( 332211 θωθωθω tatataty ++=                                    (24) 

              )))..9.4sin(.0.2..8.4sin(.5.1..0.5sin(.0.1)(0 θθθ tttty +−=                              (25) 

 
Fig. 5. Architecture of the optimization system. 

 
The goal is to minimize the sum of squared errors between the estimated sound and the target sound, as 
given by (26). This problem involves a highly complex multi-modal function having strong epistasis 
(interrelation among the variables), with optimum value 0.0.  

                                       2
100

0
0 ))()(()( tytyXf

t

∑
=

−=
�

.                                                                    (26) 

Owing to the great difficulty of solving this problem with high accuracy without specific operators for 
continuous optimization (like gradual GAs [52]), we stop the algorithm when the number of function 

     FM Synthesizer 

Feature Extraction/ 
Comparison 

The Optimizer 
(DE) 

Best Parameter 
Vector 

  Target 
  Sound 

Estimated 
Waveform 

Fitness 
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evaluations exceeds 105.  As in the previous experiments, here also the runs of the competing DE 
variants start with the same initial population.  
 
5.3 Algorithms for Comparison 

  
At first four versions of the proposed DEGL algorithm (with different schedules for changing the 
weight factor w) are compared with the DE/target-to-best/1/bin. These four versions are referred to as 
DEGL/LIW (DEGL with Linearly Increasing Weight factor), DEGL/EIW (DEGL with Exponential 
Increasing Weight factor), DEGL/RandW (DEGL with Random Weight factor) and DEGL/SAW 
(DEGL with Self Adaptive Weight factor). We included a DEGL algorithm with a fixed value of w for 
all the vectors in this comparative study. For this scheme we choose w = 0.5 (which provides equal 
importance to both local and global mutation schemes and appears to be the best performer as 
compared to other fixed values of w varying between 0.1 to 1.0 in steps of 0.1). The reason for 
including this scheme is to illustrate the effectiveness of the time-varying or adaptive weight factor 
over a fixed weight factor. In order to investigate the effect of the explorative mutation operator, the 
local-only DEGL (with w = 0) was also taken into account in the comparative study. 
 
Simulations were carried out to obtain a comparative performance analysis of DEGL/SAW (that 
appears to be the best performing algorithm from the first set of experiments) with respect to: (a) 
DE/rand/1/bin [1] (b) DE/target-to-best/1/bin [19] (c) DE/rand/1/either-or [3] (d) SADE [28] and (e) 
NSDE [31]. Among the competitors, the first two belong to the classical DE family of Storn and Price. 
The DE/rand/1/bin algorithm was chosen because of its wide popularity in solving numerical 
optimization or engineering problems [3].  
 
5.4 Initial Population and Method of Initialization 

 
For all the contestant algorithms we used the same population size, which is 10 times the dimension D 
of the problem. To make the comparison fair, the populations for all the DE variants (over all problems 
tested) were initialized using the same random seeds. Fogel and Beyer [53] have shown that the typical 
method of symmetric initialization, used to compare evolutionary computations can give false 
impressions of relative performance. In many comparative experiments, the initial population is 
uniformly distributed about the entire search space which is usually defined to be symmetric about the 
origin. In addition, many of the test functions are crafted to have optima at or near the origin, including 
the test functions for this study. A uniform distribution of initial population members has two potential 
biases for such functions. In this work we have adopted an asymmetrical initialization procedure 
following the work reported in [54]. The procedure limits the initial process to just a portion of the 
feasible search space (as shown in the third column of Table 4), which is a region defined to be half the 
distance from the maximum point along each axis back toward the origin. Consequently, as the number 
of dimensions is increased, the volume of the initialization space in the asymmetric initialization 
procedure decreases exponentially  as compared to that of the symmetric initialization (whose limits 
are  provided in Table 4). 
 
For the spread spectrum radar code design problem, each variable is randomly initialized in the interval 

]2,0[ π . The search was kept confined in this region. On the other hand, for the FMS problem, the 

initialization range of each of the six variables was kept at [0, 6.35], while the search was constricted 
in the region [-6.4, 6.35] for all the variables.                      

6 Numerical Results and Discussions 

6.1 Comparison of Different DEGL Schemes 

 
In this section we compare the performance of six variants of the proposed DEGL algorithm (with 
different strategies for tuning the weight factor w) and the DE/target-to-best/1 scheme, which uses only 
a global neighborhood and may be seen as a special case of the DEGL with w = 1 and βα = . All the 
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seven contestant algorithms in this section use the same population size, the same intial population, 
and the same stopping criterion (i.e. the same  number of maximum FEs). Here the results  are shown 
for D = 100 and each run of an algorithm is continued upto 5,000,000 FEs. Since all the algorithms 
have the same population size ( D⋅10 ), this corresponds to a maximum of approximately 5000 
generations for each problem. 
 
In the self-adaptive scheme (DEGL/SAW) for adjusting w, the weight-factor of each vector was 
randomly initialized, using a uniform distribution, and constrained within [0.05, 0.95]. This range gave 
fairly good results with DEGL/SAW algorithm. 
 
We choose the crossover rate Cr = 0.9, scale factors α = β = F = 0.8. After some experimentation we 
find that a neighborhood size approximately equal to 10% of the population size provides reasonably 
accurate results for DEGL over nearly all the problems we study here. Hence we stick to a 10% 
neighborhood size everywhere in this comparative study for DEGL. Section 6.5 presents a detailed 
discussion of the effect of the neighborhood size on DEGL’s performance. 
 
The mean and the standard deviation (within parentheses) of the best-of-run values for 50 independent 
runs of each of the five contestant algorithms are presented in Table 5 for the six hardest benchmark 
functions functions f8 to f13 (each in 100 dimensions) and also for the three composite functions CF1 to 
CF3 (each in 10 dimensions), taken from the list of CEC’05 benchmarks [48].  The best solution in 
each case has been shown in bold. Final accuracy results for all the algorithms studied here have been 
reported with precision as recorded by the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 
754). Results for relatively easier benchmarks follow a similar trend and have not been included in 
order to save space.  

 

Table 5. Average and the standard deviation of the best-of-run solution for 50 independent runs and the success 
rate tested on functions f8 to f13 and composite functions CF1 to CF3. 

 
Mean Best Value  

(Standard Deviation) 
 
      
func
tions 

DE/target-to-
best/1/ 

bin 

DEGL with 
fixed w = 0.5 

DEGL with 
w = 0 

 
DEGL/LI DEGL/EI 

DEGL 
/RandW 

DEGL/SAW 
(Cr = 0.9) 

f8 
 

-3.94382e+04 
(5.83e-06) 

-3.8756e+04 
(7.00e-06) 

-3.5621e+04 
(8.58e-06) 

-4.03634e+04 
(3.81e-05) 

-4.18436e+04 
(5.22e-05) 

-4.09039e+04 
(8.39e-06) 

-4.18983e+04 

(6.98e-06) 

f9 8.38673e-02 
(5.06e-03) 

8.35525e-02 
(4.96e-02) 

5.1215e-03 
(3.81e-03) 

3.46138e-06 
(5.91e-07) 

2.90833e-06 
(5.91e-06) 

8.93821e-21 
(5.4342e-18) 

1.7728e-26 

(3.88e-25) 

f10 
 

6.76249e-01 
(4.27e-01) 

6.65735e-01 
(7.07e-01) 

2.09364e-01 
(4.38e-01) 

5.48844e-02 
(1.68e-01) 

3.93270e-04 
(3.28e-02) 

3.00895e-10 
(7.16e-07) 

8.52742e-17 

(1.365e-15) 
f11 

 

5.27284e-05 
(4.63e-07) 

9.07997e-06 
(9.02e-05) 

6.46925e-06 
(3.49e-08) 

8.63652e-06 
(1.02e-04) 

4.82634e-06 
(3.63e-06) 

8.92369e-12 
(6.02e-13) 

4.11464e-15 

(6.02e-16) 

f12 
 

5.21919e-02 
(2.94e-04) 

5.25646e-03 
(7.15e-06) 

5.25646e-03 
(7.15e-06) 

4.34325e-04 
(3.69e-05) 

5.13084e-03 
(3.59e-04) 

4.74317e-04 
(4.05e-05) 

3.00496e-18 

(4.82e-17) 

f13 
 

2.30179e+01 
(4.38e-01) 

1.35424e+01 
(3.67e-02) 

1.77582e+01 
(6.33e-04) 

-4.86485e-01 
(1.08e-10) 

-1.00864e+00 
(1.44e-05) 

-1.10554e+00 
(6.98e-02) 

-1.14282e+00 

(9.02e-05) 

CF1 7.35430e+02 
(1.546e+02) 

 

7.36630e+02 
(4.326e+01) 

 

7.37321e+02 
(7.235e+01) 

 

6.98553e+02 
(1.236e+02) 

6.98661e+02 
(2.123e+02) 

7.847894e+02 
(3.353e+02) 

6.19227e+02 

(6.8341e+01) 

CF2 8.65593e+02 
(2.541e+02) 

8.54723e+02 
(2.482e+01) 

8.34774e+02 
(1.554e+01) 

7.82114e+02 
(1.231e+02) 

6.70442e+02 
(1.133e+02) 

6.40562e+02 
(2.643e+02) 

5.60543e+02 

(9.7837e+01) 

CF3 9.73340e+02 
(3.221e+02) 

9.13774e+02 
(5.689e+02) 

9.18563e+02 
(4.663e+01) 

1.12504e+03 
(2.236e+02) 

8.16728e+02 
(2.836e+02) 

8.41423e+02 
(2.643e+02) 

6.74823e+02 

(5.8471e+01) 

 
From Table 5, it is interesting to see that there are always one or more versions of DEGL that 
outperform the standard DE/target-to-best/1/bin scheme. This reflects the effectiveness of the 
incorporation of the hybrid mutation operator in DE. We also note that in all the cases the time-varying 
weight-factors outperform the schemes with fixed weight-factor. It is interesting to see that DEGL with 
a fixed w for all vectors yields final accuracies very close to that produced by the DE/target-to-
best/1/bin scheme. However, performance of the local-only DEGL with w = 0 remains comparable to 
DEGL with w = 0.5 but poorer than the three other DEGL schemes with time-varying weight factor. 
Most of the runs of DEGL with w = 0 fail to converge very near to the global optima within the 
prescribed number of FEs due to its sluggish behavior during the final stages of the search. This 
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suggests that a judicious trade-off between the explorative and the exploitative mutation operators is 
the key to the success of the search-dynamics of DEGL.  The self-adaptive DEGL/SAW scheme 
exhibited very good performance over all the test problems, indicating the ability of DEGL to capture 
the dynamics of the problem under test and determine the proper weight-factor. In Figure 6 the 
evolution of the weight-factor over successive generations has been shown for the best vector of the 
median run of DEGL/SAW over functions f8 - f13. The standard deviations have also been plotted at the 
sampled generations in the same figure. 
 
Very interestingly, Figure 6 indicates that the general tendency of the evolutionary learning is at first a 
decrease of the weight factor (favoring exploration at earlier stages) and then increasing the weight 
factor towards a high value (favoring exploitation at later stages of the search). 
 
In the following sections we report results of comparison between DEGL/SAW and other state-of-the-
art DE variants. We exclude the other variants of DEGL to save space and also considering the fact 
that DEGL/SAW outperformed all other schemes of controlling the weight factor over the selected 
test-suite. 
 
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 
 

 

 
(a) Variation of w for DEGL/SAW over functions f8 to f10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Variation of w for DEGL/SAW over functions f11 to f13 

 

Fig. 6. Self-adaptation characteristics of the best vector of median run for the DEGL/SAW scheme. 
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6.2 Comparison of DEGL/SAW with State-of-the-art DE-Variants 
 
In this section, we compare DEGL/SAW with five other DE variants mentioned in Section 5.3. The 
comparative study focuses on four important aspects of all the competitor algorithms: (a) The quality 
of the final solutions produced by each algorithm, irrespective of the computational time it consumes,  
(b) The speed of convergence measured in terms of the number of FEs required by an algorithm to 
reach a predefined threshold value of the objective function,  (c) the frequency of hitting the optima (or 
success rate) measured in terms of the number of runs of an algorithm that converge to a threshold 
value within a predetermined number of FEs, and (d) the issue of scalability, i.e. how  the performance 
of an algorithm changes  with the growth of the search-space dimensionality.  
 
The parametric setup for DEGL was kept same as before. For DE/rand/1/bin and DE/target-to-
best/1/bin we have taken F = 0.8, Cr = 0.9, and DNP ⋅= 10 .  In the case of DE/rand/1/either-or, we 
took 4.0=Fp [3]. For NSDE and SADE, the best  set of parameters was employed from the relevant 

literature ([31] and [28] respectively). Once set, the same parameters were used over all the tested 
problems and no further hand tuning was allowed for any of the  algorithms.  
 

6.2.1 Comparison of Quality of the Final Solution 

 

To judge the accuracy of different DE variants, we first let each of them run for a very long time over 
every benchmark function, until the number of FEs exceeds a given upper limit (which was fixed 
depending on the complexity of the problem).  The mean and the standard deviation (within 
parentheses) of the best-of-run values for 50 independent runs of each of the six algorithms are 
presented in Tables 6, 7, and 8. Missing standard deviation values in any result table in this paper 
indicate zero standard deviation. Although the experiments were conducted for D = 25, 50, 75, and 100 
for functions f1 to f13, we report here results for 25 and 100 dimensions in order to save space. Please 
note that the omitted results follow a similar trend as those  reported in Tables 6, 7, and 8. 
 
Since all the algorithms start with the same initial population over each problem instance, we used 
paired t-tests to compare the means of the results produced by best and the second best algorithms 
(with respect to their final accuracies). The t-tests are quite popular among researchers in evolutionary 
computing and they are fairly robust to violations of a Gaussian distribution with large number of 
samples like 50 [55]. In the 10-th columns of Tables 6, 7, and 8 we report the statistical significance 
level of the difference of the means of best two algorithms.  Note that here ‘+’ indicates the t value of 
49 degrees of freedom is significant at a 0.05 level of significance by two-tailed test, ‘.’ means the 
difference of means is not statistically significant and ‘NA’ stands for Not Applicable, covering cases 
for which two or more algorithms achieve the best accuracy results.    
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Table 6. Average and the standard deviation of the best-of-run solution for 50 independent runs and the success 
rate tested on f1 to f8 

 

 

A close inspection of Tables 6 - 8 indicates that the performance of the proposed DEGL/SAW 
algorithm has remained clearly and consistently superior to that of the two classical DE schemes 
(DE/rand/1/bin and DE/target-to-best/1/bin) as well as the three state-of-the-art DE variants. One may 
note from Tables 6 and 7 that for a few relatively simpler test-functions like the Sphere (f1), Schwefel’s 
problem 2.22 (f2), 25-dimensional Step function (f6), generalized Rastrigin’s function (f9), generalized 
Griewank’s function (f11) and the Shekel’s family function f22, most of the algorithms end up with 
almost equal accuracy. Substantial performance differences however, are noticed for the rest of the 
more challenging benchmark functions and especially for functions with higher dimensions like 100. 
In the case of the multi-modal functions f8 to f13, the three state-of-the-art DE variants 
(DE/rand/1/either-or, SADE, and NSDE) and DEGL/SAW outperformed the two classical DE 
algorithms: DE/rand/1/bin and DE/target-to-best/1/bin. The quality of the solutions produced by the 
SADE, DE/target-to-best/1/bin, and NSDE algorithm is close to that of the DEGL in a few cases (e.g. 
the 25-dimensional f12, f14, and the 2-dimensional f16 and f18 functions). 
 
 It is interesting to see that out of the 34 benchmark instances, in 25 cases DEGL outperforms its 
nearest competitor in a statistically significant fashion. In three cases (f1 with D=100, f8 with D=25, f9 
with D=100, and f12 with D=25) DE/rand/1/either-or achieved best average accuracy beating DEGL, 
which remained the second best algorithm. Paired t-tests, however, confirm that the difference of their 
means is not statistically significant for f1 and f9 in 100 dimensions.  
 

 

 

 

 

Mean Best Value  
(Standard Deviation) 

 
Func
tion 

 
Dim         

 

 
Max 
FEs 

DE/rand/1
/bin 

DE/target-
to-best/1/ 

bin 

DE/rand/1/ 
either-or 

SADE [27] NSDE [30] 
DEGL/ 
SAW 

Statistical 
Significance 

 
25 5×105 6.8594e-29 

(4.984e-23) 
5.7093e-25 
(2.109e-19) 

7.3294e-36 
(5.394e-34) 

4.0398e-35 
(3.905e-32) 

9.5462e-35 
(3.009e-34) 

8.7845e-37 

(3.823e-35) 
. 

 

f1 

100 5×106 8.4783e-24 
(4.664e-22) 

2.5693e-23 
(3.746e-21) 

4.9382e-26 

(4.9382e-25) 

5.8472e-24 
(3.8271e-23) 

8.3812e-23 
(3.925e-25) 

3.6712e-25 
(4.736e-23) 

. 

25 5×105 7.5462e-29 
(6.731e-29) 

5.7362e-25 
(4.837e-10 

7.4723e-31 
(2.736e-34) 

8.3392e-26 
(4.837e-28) 

8.9437e-30 
(1.003e-30) 

4.9392e-36 

(3.928e-34) 
+ f2 

100 5×106 1.6687e-09 
(6.77e-10) 

3.5273e-06 
(1.68e-08) 

6.2827e-13 
(1.91e-15) 

2.6595e-12 
(3.36e-14) 

9.1395e-10 
(3.36e-10) 

6.9982e-14 

(1.34e-16) 
+ 

25 5×105 4.9283e-11 
(2.03e-11) 

6.2713e-09 
(4.82e-10) 

5.8463e-24 
(4.737e-24) 

4.2761e-14 
(3.87e-14) 

3.0610e-09 
(4.22e-10) 

1.2094e-26 

(3.827e-25) 
+ 

 

f3 
100 5×106 6.5712e-10 

(2.91e-10) 
5.6125e-10 
(3.22e-12) 

3.4315e-11 
(5.07e-12) 

4.5641e-10 
(5.29e-13) 

7.3412e-10 
(6.12e-10) 

5.8832e-13 

(3.06e-16) 
+ 

25 5×105 8.3611e-14 
(6.37e-13) 

5.3711e-10 
(9.03e-09) 

1.6281e-14 
(3.42e-13) 

3.0229e-14 
(1.37e-15) 

2.0936e-11 
(1.09e-08) 

4.9932e-15 

(1.18e-14) 
+ 

 
 

f4 100 5×106 3.0095e-12 
(3.26e-11) 

3.0005e-08 
(3.69e-09) 

9.4442e-13 
(3.29e-14) 

3.7001e-11 
(1.08e-13) 

6.0927e-09 
(4.45e-08) 

3.5677e-14 

(4.55e-13) 
+ 

25 5×105 9.8372e-23 
(4.837e-24) 

3.0345e-10 
(3.69e-09) 

4.9372e-25 
(3.726e-21) 

5.6472e-26 

(9.367e-24) 

2.6473e-25 
(4.536e-25) 

6.8948e-25 
(4.361e-26) 

.  
f5 
 100 5×106 8.4511e-05 

(2.748e-05) 
2.6183e-01 
(1.329e-03) 

8.5462e-23 
(4.635e-23) 

8.6471e-25 
(3.782e-24) 

5.9208e-08 
(2.03e-09) 

1.5463e-25 

(7.301e-22) 
. 

25 5×105 6.0938e-32 
(9.362e-40) 

7.6473e-41 
(3.827e-37) 

2.6839e-45 
(3.837e-43) 

1.6729e-36 
(2.637e-32) 

4.0361e-28 
(2.949e-34) 

9.5627e-48 

(2.732e-45) 
+  

f6 
100 5×106 3.2387e-14 

(2.67e-09) 
4.0102e-12 
(3.85e-13) 

8.3026e-15 
(5.51e-16) 

6.4897e-21 
(3.938e-19) 

5.8924e-15 
(6.00e-13) 

9.4826e-22 

(7.483e-24) 
+ 

25 5×105 4.9391e-03 
(5.92e-04) 

9.0982e-03 
(2.08e-04) 

6.9207e-04 
(4.26e-06) 

3.7552e-02 
(9.02e-03) 

4.3482e-03 
(6.50e-04) 

1.0549e-07 

(2.33e-06) 
+  

f7 
100 5×106 2.8731e-02 

(2.33e-02) 
3.3921e-02 
(3.32e-02) 

4.3332e-03 
(5.76e-02) 

5.9281e-02 
(4.31e-03) 

9.8263e-02 
(2.90e-03) 

6.9921e-06 

(4.56e-05) 
+ 

25 5×105 -1.0182e+04 
(2.83e-04) 

-1.0236e+04 
(3.81e-05) 

-1.0475e+04 

(2.27e-06) 

-1.0475e+04 

(2.27e-06) 

-1.1472e+04 
(2.91e-03) 

-1.0475e+04 

(3.77e-03) 
NA  

f8 
100 5×106 -4.18315e+04 

(2.83e-04) 
-3.9382e+04 
(5.83e-06) 

-4.18445e+04 
(5.22e-05) 

-4.18091e+04 
(2.49e-06) 

-4.18091e+04 
(2.49e-06) 

-4.18983e+04 

(6.98e-06) 
. 
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Table 7. Average and the standard deviation of the best-of-run solution for 50 independent runs tested on f9 to f21 

 

 
Table 8. Average and the standard deviation of the best-of-run solution for 50 independent runs tested on 

composite functions CF1 to CF3 taken from the CEC’05 benchmarks 

 
As long as Cr < 1, DEGL will not be rotationally invariant, i.e., its performance will depend on the 
orientation of the coordinate system in which vectors are evaluated [3]. Since the composite functions 
CF1, CF2 and CF3 are rotated in nature, we also solve them using DEGL/SAW with Cr = 1. Table 5 
shows that this rotationally invariant version of DEGL performs significantly better on the composite 
test functions as compared to the DEGL with Cr = 0.9. However, the performance over the 21 
traditional benchmarks (which are unrotated) is nearly the same for both the versions.  In order to save 
space we have not shown the results of DEGL/SAW with Cr = 1 in Tables 6 and 7. 
 

 

 

Mean Best Value  
(Standard Deviation) 

 
       
Func 

 
 
  D 

 

Max 
FEs 

DE/rand/1/bin 
DE/target-to-

best/1/ 
bin 

DE/rand/1/ 
either-or 

SADE [27] NSDE [30] 
DEGL/ 
SAW 

Statistical 
Significance 

 
25 5×105 1.0453e-03 

(8.04e-02) 
9.5278e-01 
(4.72e-01) 

1.7109e-23 
(2.726e-24) 

6.7381e-24 
(3.728e-21) 

4.8392e-21 
(8.872e-20) 

5.8492e-25 

(5.333e-27) 
. 

 
 

f9 
 100 5×106 2.1121e-02 

(4.86e-03) 
6.76249e-01 
(4.27e-01) 

8.4719e-23 

(9.36e-22) 

5.8824e-21 
(4.83e-20) 

5.5732e-05 
(5.93e-04) 

1.7728e-22 
(3.88e-20) 

. 

25 5×105 4.1902e-08 
(3.36e-08) 

9.8035e-03 
(6.80e-03) 

6.9437e-15 
(4.86e-15) 

7.8343e-15 
(2.85e-15) 

5.9749e-10 
(3.2231e-04) 

5.9825e-23 

(1.00e-22) 
+ 

 
 

f10 100 5×106 7.6687e-05 
(6.767e-05) 

6.76249e-01 
(4.237e-01) 

6.9398e-13 
(4.852e-13) 

3.0665e-12 
(5.125e-13) 

4.1232e-05 
(7.496e-06) 

8.52742e-17 

(1.365e-15) 
+ 

25 5×105 6.8318e-22 
(3.837e-25) 

7.94504e-07 
(8.03e-08) 

3.0905e-34 
(7.462e-34) 

1.8274e-28 
(7.682e-29) 

7.9318e-26 
(3.774e-28) 

2.9931e-36 

(4.736e-35) 
+ 

 

f11 
100 5×106 2.1962e-10 

(8.45e-11) 
5.27284e-05 
(4.63e-07) 

3.2928e-12 
(2.77e-13) 

8.9569e-13 
(1.02e-14) 

5.0392e-10 
(4.29e-08) 

4.11464e-15 

(6.02e-16) 
+ 

25 5×105 7.0931e-16 
(6.22e-15) 

2.8962e-13 
(2.25e-10) 

5.1469e-32 

(4.22e-29) 

9.3718e-24 
(6.193e-28) 

5.8471e-21 
(3.728e-21) 

7.2094e-27 
(4.838e-28) 

+ 
 
 

f12 100 5×106 4.2455e-10 
(2.96e-09) 

5.21919e-02 
(2.94e-04) 

2.9137e-15 
(4.30e-16) 

2.8417e-15 
(1.45e-14) 

4.8923e-12 
(8.45e-13) 

3.00496e-18 

(4.82e-17) 
+ 

25 5×105 -1.12836e+00 
(4.46e-08) 

-4.86485e-01 
(1.08e-10) 

-1.1382e+00 
(3.29e-10) 

-1.14280e+00 
(3.85e-07) 

-1.14276e+00 
(3.44e-09) 

-1.14282e+00 

(5.81e-06) 
+ 

 

 
f13 

 
100 5×106 2.0621e-02 

(5.58e-03) 
5.81493e-01 
(1.08e-02) 

2.19321e+00 
(3.32e-01) 

-1.1014e+00 
(6.98e-03) 

-1.10266e+00 
(7.84e-05) 

-1.14282e+00 

(9.02e-05) 
+ 

f14 2 5×105 9.9813292e-01 
(5.42e-10) 

9.9860553e-01 
(4.26e-03) 

9.9800390e-01 

(1.13e-16) 

9.9800884e-01 
(1.93e-18) 

9.9860346e-01 
(1.07e-02) 

9.9800390e-01 

(1.15e-18) 
NA 

f15 4 5×105 4.0361420e-04 
(2.81e-04) 

4.8242655e-04 
(6.41e-05) 

3.6734442e-04 
(5.13e-05) 

3.7044472e-04 
(9.82e-07) 

3.7320963e-04 
(4.33e-03) 

3.7041849e-04 

(2.11e-09) 
+ 

f16 2 5×105 -1.029922e+00 
(1.82e-08) 

-1.031149e+00 
(2.44e-08) 

-1.031242e+00 
(4.98e-06) 

-1.031630e+00 

(9.73e-12) 

-1.031630e+00 

(3.33e-10) 

-1.031630e+00 

(4.28e-10) 
NA 

f17 2 5×105 3.9788959e-01 
(6.39e-06) 

3.9789793e-01 
(6.28e-07) 

3.9788915e-01 
(6.82e-06) 

3.9788783e-01 
(2.68e-06) 

3.9788392e-01 
(4.09e-06) 

3.9788170e-01 

(8. 54e-04) 
. 

f18 2 5×105 3.0834435e+00 
(4.73e-01) 

3.146090e+00 
(5.83e-01) 

3.000000e+00 

 

3.000000e+00 

 

3.000000e+00 

 

3.000000e+00 NA 

f19 2 5×105 -1.0042985e+01 
(4.32e-05) 

-6.840054e+00 
(3.87e+00) 

-1.010974e+01 
(2.67e-05) 

-1.015050e+01 
(4.59e-04) 

-1.014876e+01 
(3.57e-03) 

-1.015323e+01 

(7.34e-08) 
+ 

f20 2 5×105 -1.0400382e+01 
(8.54e-10) 

-1.040073e+01 
(4.53e-08) 

-1.040068e+01 
(9.24e-10) 

-1.040189e+01 
(6.94e-05) 

-1.040089e+01 
(3.00e-08) 

-1.040295e+01 

(5.93e-04) 
+ 

f21 2 5×105 -1.0536082e+01 
(2.87e-03) 

-7.023436e+01 
(4.78e-05) 

-1.0474381e+01 
(6.88e-03) 

-1.0536234e+01 
(2.46e-06) 

-1.023436e+01 
(2.72e-02) 

-1.053641e+01 

(3.90e-08) 
+ 

Mean Best Value  
(Standard Deviation) 

       
Func 

 
  
D 

 

Max 
FEs 

DE/rand/1 
/bin 

DE/target-to-
best/1/ 

bin 

DE/rand/1/ 
either-or 

SADE [27] NSDE [30] 
DEGL/ 
SAW 

(Cr = 0.9) 

DEGL/ 
SAW 

(Cr = 1) 

 
Statistical 

Significance 
 

CF1 10 5×106 6.400300e+02 
(2.3428e+02) 

7.92834e+02 
(3.0922e+02) 

6.280932e+02 
(2.0703e+02) 

5.334983e+02 
(3.9672e+01) 

6.230469e+02 
(4.5297e+01) 

6.19227e+02 
(6.8341e+01) 

5.03826e+02 

(4.0995e+01) 
+ 

CF2 10 5×106 6.340356e+02 
(2.6635e+02) 

7.993241e+02 
(4.6723e+02) 

6.157323e+02 
(9.8836e+01) 

5.15284e+02 
(2.0784e+02) 

7.198302e+02 
(4.8735e+02) 

7.60543e+02 
(9.7837e+01) 

4.18542e+02 

(8.9984e+01) 
+ 

CF3 10 5×106 8.56392e+02 
(9.4863e+01) 

1.12873e+03 
(6.7394e+01) 

7.48427e+02 
(5.8473e+01) 

7.88492e+02 
(4.4342e+01) 

8.93824e+02 
(3.8764e+01) 

6.74823e+02 
(5.8471e+01) 

4.76239e+02 

(3.7842e+01) 
+ 
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6.2.2  Comparison of the Convergence Speed and Success Rate 

 
In order to compare the speeds of different algorithms, we select a threshold value of the objective 
function for each benchmark problem. For functions with minima at 0, this threshold is at 10-20. To 
obtain an unbiased comparative performance, for other functions, this value is chosen to be somewhat 
larger than the minimum objective function value found by each algorithm in Tables 6, 7, and 8. We 
run each algorithm on a function and stop as soon as the best fitness value determined by the algorithm 
falls below the predefined threshold. Then we note the number of FEs the algorithm takes. A lower 
number of FEs corresponds to a faster algorithm. Tables 9, 10, and 11 report the number of runs (out of 
50) that managed to find the optimum solution (within the given tolerance) as well as the mean number 
of FEs and standard deviations (within parenthesis) required by the algorithms to converge within the 
prescribed threshold value.  Entries marked as 0 indicate that no runs of the corresponding algorithm 
converged below the threshold objective function value. Missing values of standard deviation in these 
tables also indicate a zero standard deviation.  
 
Tables 6 and 9 indicate that, not only does DEGL/SAW yield the most accurate results for nearly all 
the benchmark problems, but it does so consuming the least amount of computational time. In addition, 
the number of runs that converge below a pre-specified cut-off value is also greatest for DEGL over 
most of the benchmark problems covered here. This indicates the higher robustness (i.e. the ability to 
produce similar results over repeated runs on a single problem) of the algorithm as compared to its 
other four competitors. Usually in the community of stochastic search algorithms, robust search is 
weighted over the highest possible convergence rate [56, 57]. 
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Table 9. No. of successful runs, mean no. of FEs and standard deviation (in parentheses) required to converge to 
the cut-off fitness over the successful runs for functions f8 to f11.  

 
 

 No. of successful runs, mean no. of FEs and (standard deviation ) required to converge to 
the prescribed threshold fitness 

 
Func
tion 

 

D 

 

 
Threshold 
objective 
function 

value 
DE/rand/1 

/bin 

DE/target-to-
best/1/ 

bin 

DE/rand/1 
/either-or 

SADE [28]  NSDE [31] 
DEGL/ 
SAW 

25 1.00e-20 50, 
 109372.5 
(4773.28) 

50,  
376421.20 
(10983.46) 

50,  
98204.24 
(2942.87) 

50,  
104982.64 
(5182.67) 

50,  
105727.80 
(3427.57) 

50,  

91935.40 

(3888.45) 

 

f1 

100 1.00e-20 50,  
687322.24 
(12153.67) 

50, 
1033567.40 
(58391.56) 

50, 

403922.56 

(3814.25) 

50,  
738720.84 
(28731.88) 

50,  
565382.24 
(2827.56) 

50,  
498521.54 
(10832.41) 

25 1.00e-20 50, 
 266371.40 
(31923.45) 

50, 
417382.80 
(23221.45) 

50,  
198342.22 
(3421.68) 

50,  
306742.28 
(18534.55) 

50,  
300371.48 
(9034.26) 

50, 

 157234.76 

(4451.72) 

f2 

100 1.00e-20 13,  
2034583.46 
(18235.48) 

6,  
2935411.45 
(21893.56) 

28, 
1062744.69 
(44583.41) 

23,  
1257362.57 
(3417.34) 

20,  
1782336.10 
(36710.05) 

34, 

 978357.83 

(23727.45) 
25 1.00e-20 12,  

298341.67 
(24376.27) 

5,  
378392.20 
(34621.22) 

50, 
 123682.54 
(63827.06) 

16,  
296473.93 
(27268.45) 

7,  
363986.82 
(52741.78) 

50, 

 110528.68 

(13873.51) 

 

f3 

100 1.00e-20 13,  
2638224.33 
(57398.21) 

10, 
 4562312.70 
(17372.68) 

15,  
2745218.47 
(37123.69) 

14,  
2696359.51 
(14225.47) 

13,  
2671982.93 
(46188.26) 

18, 

2063728.48 

(27351.57) 

25 1.00e-20 16,  
376291.47 
(12836.48) 

8,  
467262.25 
(26111.78) 

19,  
309309.52 
(17829.46) 

17,  
292478.83 
(8372.58) 

11, 
 408291.79 
(26721.77) 

21,  

294812.82 

(36173.52) 

 
 
 

f4 
100 1.00e-20 19,  

3174782.17 
(17283.49) 

3,  
4453782.67 
(18253.58) 

22,  
3228379.27 
(4824.81) 

17,  
3139382.38 
(33728.42) 

5,  
4140835.40 
(22338.86) 

25, 

2263976.44 

(28371.46) 

25 1.00e-20 50,  
356253.38 
(82732.33) 

17,  
478290.91 
(57263.72) 

50, 
 315633.92 
(47192.57) 

50,  

267319.74 

(23556.24) 

50, 
 299831.26 
(48382.57) 

50,  
338279.08 
(28846.37) 

 
f5 
 

100 1.00e-20 1,  
3398272 

0 50,  
3067263.78 
(56723.83) 

50, 
2844738.62 
(66729.38) 

3,  
4563742.33 
(128123.57) 

50, 

2709313.82 

(12338.11) 

25 1.00e-20 50,  
189367.38 
(83412.84) 

50, 
132676.28 
(6769.48) 

50,  
122845.64 
(7378.36) 

50, 
173490.18 
(7638.46) 

50, 
235177.72 
(13223.94) 

50,  

96832.24 

(4631.66) 

 
f6 

100 1.00e-20 18,  
2357827.59 
(33253.68) 

16,  
3098277.26 
(83921.47) 

20, 
2299868.50 
(27632.58) 

47,  
1824359.69 
(27733.61) 

25,  
3622719.24 
(47378.19) 

50, 

1238461.98 

(36278.64) 

25 1.00e-20 0 0 2,  
467236.50 
(43827.83) 

0 0 4,  

417823.25 

(27192.82) 

f7 

100 1.00e-20 0 0 1,  
3689267.48 

0 0 3,  

3163563.67 

(78282.58) 

25 -1.0410e 
+04 

12, 
19817.50 

(8723.837) 

17,  
13039.65 
(336.378) 

50,  
12410.04 

(1201.278) 

50,  
9887.50 

(822.281) 

32,  
37847.82 
(4431.90) 

50,  

9492.64 

(871. 76) 

 

f8 

100 -4.1800e 
+04 

 

3,  
359834.33 
(4353.825) 

1, 
 51729 

 

13,  
133282.73 
(5362.366) 

25,  
363291.80 
(2338.944) 

20,  
2178283.50 
(24332.78) 

35, 

 39928.45 

(231.627) 

25 1.00e-20 19, 
 345328.18 
(41128.91) 

13,  
46843.92 

(34521.372) 

50, 
 330272.74 
(3642.289) 

50,  
195823.88 
(4249.392) 

44,  
345654.73 
(326.84) 

50, 

 87148.34 

(1325.72) 

 
 

f9 
 

100 1.00e-20 5, 
1840322.80 
(3852.196) 

2, 
 2022275.50 
(27327.24) 

50,  
838932.48 
(23677.66) 

50,  
744938.28 

(34147.928) 

16,  
3290384.57 
(53209.58) 

50,  

539282.72 

(26547.09) 

25 1.00e-20 14,  
226816.89 
(44721.76) 

4,  
412675.25 
(16834.37) 

34, 
 238372.74 
(32325.67) 

32,  
236290.86 
(15533.08) 

26,  
287812.83 
(14039.54) 

50,  

224883.78 

(13212.87) 

 
 

f10 

100 1.00e-20 13, 
1873625.56 
(29123.902) 

2, 
4486372.50 
(98273.57) 

15, 
1782210.66 
(72233.371) 

13,  
1065920.64 
(24383.71) 

7,  
2082983.84 
(81744.84) 

27, 

 925628.73 

(7823.28) 

25 1.00e-20 50,  
333948.52 

(12314.821) 

6, 
 356061.52 
(11300.97) 

50,  
225092.84 
(12123.19) 

50,  
316382.04 
(35338.83) 

50,  
369283.71 
(45478.88) 

50, 

196258.22 

(14235.83) 

 

f11 

100 1.00e-20 26,  
1887635.65 
(44612.34) 

12, 
2833416.96 
(17218.06) 

29,  
2633782.74 
(10217.26) 

34,  
1936287.62 
(14235.37) 

27,  
2235653.56 
(30362.67) 

43,  

1627092.58 

(11217.31) 
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Table 10. No. of successful runs, mean no. of FEs and standard deviation (in parentheses) required to converge to 
the cut-off fitness over the successful runs for functions f12 to f21.  

 

 
Table 11. No. of successful runs, mean no. of FEs and standard deviation (in parentheses) required to converge to 

the cut-off fitness over the successful runs for composite functions CF1 to CF3.  

 
The convergence characteristics of seven difficult test functions are shown in Figure 7 in terms of the 
fitness value of the median run of each algorithm. All the graphs except for the composite functions 
CF1 to CF3 have been drawn for D = 100 dimensions. Convergence graphs for the composite 
functions appear for D = 10 dimensions. 
 
 
 

 No. of successful runs, mean no. of FEs and (standard deviation ) required to 
converge to the prescribed threshold fitness 

 
       
Func 

 
 
  D 

 

 
Threshold 
objective 

function value DE/rand/1 
/bin 

DE/target-to-
best/1/ 

bin 

DE/rand/1/ 
either-or 

SADE [28] 
NSDE 
[31] 

DEGL/ 
SAW 

25 1.00e-20 35, 
294584.44 

(22563.378) 

30, 
3472185.67 
(13382.229) 

42, 
209372.87 
(12742.03) 

50, 
126574.64 
(16833.89) 

46, 
478732.05, 
(3884.04) 

50, 

150039.62 

(4831.28) 

 
 

f12 

100 1.00e-20 8, 
3122658.25 
(62922.84) 

5, 
3908138.80 
(13937.383) 

23, 
2664722.53 
(47212.38) 

20, 
1637409.40 
(18219.526) 

10, 
2673864.70 
(53121.65) 

27, 

1436190.89 

(13627. 82) 

25 -1.1428e+00 
 

13, 
230372.52 
(7313.297) 

3, 
428023.33 

(84517.371) 

26, 
237639.09 
(14573.96) 

42, 
213739.78 

(12347.391) 

24, 
738742. 34 
(24322.82) 

48, 

121940.72 

(33398.90) 

 
f13 

 

100 -1.1428e+00 
 

1, 
3328426 

 

0 0 14, 
1702654.85 
(21743.57) 

25, 
1283665.44 
(9487.37) 

28,  

398493.74 

(25134.38) 

f14 2 9.9800390e 
-01 

 

19, 
94233.57 
(2312.57) 

14, 
89371.53 
(1409.26) 

46, 
68392.37 
(5231.48) 

27, 
84032.58 
(3842.53) 

15, 
77362.94 
(4437.28) 

47, 

67823.84 

(3725.36) 

f15 4 3.705e-04 
 

0 0 13, 
58935.28 
(3822.72) 

33, 
68293.46 
(2219.58) 

20, 
73821.05 
(6319.48) 

41, 

65783.38 

(1749.51) 

f16 2 -1.03170e+00 
 

32, 
83920.68 
(2124.56) 

37, 
98529.61 
(1098.59) 

27, 
83782.79 
(1271.47) 

50, 
77129.34 
(3731.63) 

50, 
71036.28 
(1211.48) 

50, 

67382.39 

(1726.49) 

f17 2 3.980e-01 
 

41, 
103273.57 
(2231.68) 

43, 
79382.42 
(907.31) 

43, 
75823.45 
(3281.68) 

38, 
78939.37 
(1325.46) 

47, 
84983.94 
(2258.10) 

49, 

73727.83 

(4308.58) 

f18 2 3.00e+00 
 

21, 
67392.59 
(3381.62) 

23, 
77539.42 
(4839.86) 

50, 

89482.78 

(3238.56) 

50, 

79035.28 

(3381.98) 

50, 

80382.70 

(419.49) 

50, 

69837.62 

(1724.08) 

f19 2 -1.01550e+01 23, 
109372.48 
(3341.67) 

34, 
98922.93 
(3212.68) 

44, 
68672.70 
(1332.67) 

41, 
67478.37 
(2001.83) 

37, 
79820.42 
(1692.78) 

46, 

58372.96 

(3827.58) 
f20 2 -1.04500e+01 35, 

84721.07 
(3412.39) 

42, 
107482.69 
(10824.57) 

48, 
58373.47 
(2221.680 

47, 
48372.83 
(2294.83) 

44, 
85933.58 
(3329.74) 

50, 

56098.08 

(3187.44) 

f21 2 -1.05500e+01 26, 
86743.93 
(6983.07) 

30, 
85999.67 
(2901.83) 

32, 
84892.66 
(2319.59) 

46, 
68492.69 
(2326.09) 

23, 
100232.67 
(3721.78) 

49, 

67583.93 

(3317.58) 

No. of successful runs, mean no. of FEs and (standard deviation ) required to converge to the 
prescribed threshold fitness 

Func  
D 

 

Threshold 
objective 
function 

value 
DE/rand/1 

/bin 
DE/target-
to-best/1/ 

bin 

DE/rand/1/ 
either-or 

SADE [28] NSDE [31] DEGL/ 
SAW 

(Cr = 0.9) 

DEGL/ 
SAW 

(Cr = 1) 
CF1 10 8.10e+02 34, 

2683073.04 
(45214.48) 

19, 
3835238.75 
(18183.95) 

42, 
637222.35 
(39357. 23) 

50, 
1823847.64 
(52932.821) 

12, 
624732.56 

(35330.493) 

36, 
1707873.04 
(13434.482) 

50, 

1645938.75 

(18843.905) 

CF2 10 8.10e+02 33, 
530857.85 
(13439.09) 

21, 
2539841.89 
(87438.490) 

25, 
942325.40 
(3173.74) 

25, 
818472.16 
(7384.492) 

37, 
510932.79 
(3438.473) 

36, 
1230857.85 
(13139.409) 

39, 

83401.86 

(5438.46) 

CF3 10 1.20e+03 17, 
3645817.50 
(95823.83) 

17, 
4834039.65 
(35336.78) 

41, 
1597232.03 
(37811.28) 

40, 
196887.50 
(12372.28) 

24, 
3139492.64 
(54431.26) 

45, 
149817.56 
(2339.37) 

50, 

913039.68 

(3576.78) 
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(a) Generalized Ackley’s Function (f10)                                 (b) Generalized Griewnk’s Function (f11) 
 
 
 
                   
 
 
 
 
 
 

 

 

  (c) Generalized Rastrigin’s Function (f9)                                (d) Generalized Rosenbrock’s Function (f5) 
                           
 
 
                                                                                    
 
 
 
 
 
 
 
 
 
 
 
 
(e) Composite Function CF1                                                       (f) Composite Function CF2 
 
 
 
 
 



 30 

 
 
 
 
 
 
 
 
                                    
 
 
 
 
 
 
 
 

 
(g) Composite Function CF3 

Fig. 7. Progress towards the optimum solution for median run of six algorithms over seven difficult test functions. 
 
 

6.2.3  Scalability Comparison 

 
Performance of most of the evolutionary algorithms (including DE and PSO) deteriorates with the 
growth of the dimensionality of the search space. Increase of dimensions implies a rapid growth of the 
hyper-volume of the search space and this in turn slows down the convergence speed of most of the 
global optimizers. Here we show how the performance of the six DE variants scale against the growth 
of dimensions from 25 to 100. Figure 8 shows the scalability of the six algorithms over four difficult 
test functions - how the average computational cost (measured in number of FEs required to yield a 
threshold fitness value) to find the solution varies with an increase in the dimensionality of the search 
space. 
 
We note that the computational cost of both DEGL/SAW and SADE (to yield a given accuracy) 
increases most sluggishly with the search space dimensionality for the following test-functions: f5, f10, 
f11, and f9.  
 
                                                                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Generalized Ackley’s Function (f10)                              (b) Generalized Griewank’s Function (f11) 

Search Space Dimensionality Search Space Dimensionality 
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(c) Generalized Rastrigin’s Function (f9)                                 (d) Generalized Rosenbrock’s Function (f5) 
 
Fig. 8. Variation of mean number of FEs required for convergence to predefined threshold accuracy with increase 

in dimensionality of the search space.  

 

6.3 Comparison with other State-of-the-art Evolutionary Techniques 

 
In this section we compare the performance of DEGL/SAW with that of four state-of-the-art 
evolutionary and swarm-based optimization techniques, well-known as CPSO-H [38], IPOP-CMA-ES 
[58], MA-S2 [59], and G3 with PCX [60]. Below we briefly describe each of these algorithms. 
 
1) CPSO-H: van den Bergh and Engelbrecht proposed a Cooperative Particle Swarm Optimizer 
(CPSO) in [36]. Although CPSO uses one-dimensional (1-D) swarms to search each dimension 
separately, the results of these searches are integrated by a global swarm to significantly improve the 
performance of the original PSO on multi-modal problems. The CPSO-H algorithm uses a hybrid 
swarm, consisting of a maximally split cooperative swarm (D one-dimensional swarms for one D-
dimensional parameter vector) and a plain swarm. Both components employ identical values for the 
acceleration coefficients ( 49.121 == CC ) and the inertial factor ω decreasing linearly with time. 

They use a maximum velocity maxV
�

clamped to the search domain [38].  

 

2) IPOP-CMA-ES: CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [61, 62] is an 
evolutionary strategy that uses informed mutation based on local structural information, but does not 
directly bias its search motion toward other individuals of the population. Auger and Hansen have 
recently proposed a restart CMA-ES [58], where the population size is increased (IPOP) for each 
restart. By increasing the population size, the search characteristic becomes more global after each 
restart. This variant is named as IPOP-CMA-ES. 
 
3) MA-S2: Memetic Algorithms (MAs) [63, 64] are based on the hybridization of Genetic Algorithm 
(GA) with Local Search (LS) techniques. In this study, MA-S2 [59] stands for an adaptive Meta-
Lamarckian learning-based MA that employs a stochastic approach (the biased roulette wheel strategy) 
making use of the knowledge gained online to select a suitable local method with the GA.  
 
4) G3 with PCX: The main research effort in the field of real parameter GA is more or less focussed 
on the design of efficient recombination operators used to create offspring from  parent solutions. Deb 

et al. [60] proposed a generic parent-centric recombination scheme (PCX) and integrated it with a 
steady state, elite preserving, scalable, and computationally fast population alteration model of the GA, 
which they named the G3 (Generalized Generation Gap) model. Their results indicate that the G3 
model with PCX can outperform many other existing GA models when tested on the standard 
benchmark functions.  
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We employ the best parametric set-up for all these algorithms as prescribed in their respective sources. 
The mean and the standard deviation (within parentheses) of the best-of-run values of 50 independent 
runs for each algorithm have been presented in Tables 12 and 13. In order to save space we report only 
the hardest problem instances (multi-dimensional functions with D = 100) in these tables. The 
algorithms compared in this section have different population sizes and also differ in their initial 
population structure. Thus to test the statistical significance of the results, we used two-tailed unpaired 
t tests between the two best algorithms. The results of t test have been indicated in the 9-th column of 
Table 12 and 10-th column of Table 13. Note that here ‘+’ indicates the t value of 98 degrees of 
freedom is significant within a 95% confidence interval by two-tailed test, ‘.’ means the difference of 
means is not statistically significant and ‘NA’ stands for Not Applicable, covering cases in which two 
or more algorithms achieve the best accuracy results.    
 
These simulation results show that DEGL/SAW is superior to all the other algorithms in terms of the 
average final accuracy over 12 cases reported in Table 12 and 2 cases in Table 13. DEGL/SAW yields 
results comparable to two or more algorithms for 6 cases in Table 12. It is interesting to see that out of 
the 12 cases in Table 12, where DEGL/SAW was able to beat all its contestant algorithms, for 9 
instances the difference between the means of DEGL/SAW and its nearest competitor is statistically 
significant. From Table 12, we find that CPSO-H was able to outperform DEGL/SAW (and all the 
other contestants) over the 100-dimensional Schwefel’s problem 1.2 (f3) and IPOP-CMA-ES alone 
achieved the greatest accuracy for the 100-dimensional generalized penalized function (f12) beating 
DEGL/SAW. For f3, DEGL/SAW remained the third best algorithm (after CPSO-H and G3 with PCX) 
while for the f12 function, it secured the second place in terms of final accuracy.  However, the last 
column of Table 12 shows the difference of means of DEGL/SAW and IPOP-CMA-ES is not 

statistically significant in the case of the f12 function.  
 
For lower dimensional multi-modal functions f14 to f21, almost all the algorithms end up with nearly 
equal levels of final accuracy, f19 being an exception where DEGL/SAW appeared to perform 
significantly better as compared to all other algorithms. For the higher dimensional and multi-modal 
functions f8 to f13, however, CPSO-H and IPOP-CMA-ES remained as the toughest competitor of 
DEGL/SAW.  Note that over these functions DEGL/SAW remained statistically better as compared to 
the MA-S2 algorithm, which also employs local search strategies in an adaptive fashion with GA. 
Except for the generalized penalized function f12, DEGL/SAW met or beat the IPOP-CMA-ES over all 
other multi-modal functions in 100 dimensions. The final accuracy provided by DEGL/SAW improves 
significantly as compared to all other algorithms for three hardest uni-modal functions: the generalized 
Rosenbrock’s function (f5), the discontinuous step function (f6), and the noisy quartic function (f7).  
 
The convergence characteristics of the contestant algorithms over the six hardest test functions have 
been shown in Figure 9 in terms of the objective function value of the median run of each algorithm. 
For the step function, characterized by plateaus and discontinuity, DEGL/SAW maintained a steady 
convergence rate that finally finished at the lowest objective function value, while the local search-
based MA-S2 showed a much slower convergence. Usually a local search method that relies on 
geographical neighborhoods performs poorly on the step function because the algorithm mainly 
searches in a relatively small local neighborhood. On the other hand,  DEGL employs a geographically 
randomized neighborhood structure (local only in the sense of vector indices), and the individuals can 
make longer jumps enabling them to move from one plateau to a lower one with relative ease. 
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Table 12. Average and  standard deviation of the best-of-run solutions for 50 independent runs and the success 
rate tested on f1 to f21 

 

 
 

Table 13. Average and  standard deviation of the best-of-run solutions for 50 independent runs tested on 
composite functions CF1 to CF3 taken from the CEC’05 benchmarks 

 
 
 

Mean Best Value 
(Standard Deviation) 

 
 
Func 

 

 

D 

 
Max 
FEs 
 CPSO-H 

IPOP-CMA-
ES 

MA-S2 
G3 with 

PCX 
DEGL/SAW 
 

Statistical 
Significance 

 
f1 
 

100 5×106 6.5635e-22 
(7.234e-28) 

9.6853e-23 
(7.232e-26) 

7.5364e-22 
(3.454e-25) 

2.8002e-20 
(6.467e-14) 

8.3812e-23 

(3.925e-25) 
. 

f2 100 5×106 7.4164e-08 
(6.225e-07) 

2.7429e-03 
(1.648e-07) 

6.2899e-04 
(1.91e-15) 

2.6595e-06 
(3.36e-10) 

9.1395e-10 

(3.36e-10) 
+ 

f3 100 5×106 3.5712e-23 

(7.239e-22) 

2.5358e-08 
(1.923e-09) 

8.0005e-07 
(8.947e-05) 

3.7659e-10 
(2.596e-10) 

9.7852e-10 
(6.132e-08) 

+ 

f4 
 

100 5×106 6.5132e-13 
(1.795e-16) 

1. 7685e-12 
(4.949e-06) 

4.8865e-12 
(2.209e-13) 

7.4823e-13 
(3.773e-09) 

3.7068e-14 

(1.08e-12) 
. 

f5 
 

100 5×106 1.5041e-01 
(9.423e-01) 

6.0499e-22 
(8.345e-24) 

1.5639e-20 
(2.700e-20) 

5.7778e-18 
(2.233e-19) 

1.5463e-25 

(7.301e-22) 
+ 

f6 
 

100 5×106 1.4532e-15  
(1.713e-16) 

2.1052e-20 
(8.691e-21) 

1.4455e-13 
(3.938e-11) 

7.0054e-17 
(2.644e-14) 

8.6493e-22 

(8.483e-23) 
+ 

f7 
 

100 5×106 8.5829e-13 
(1.492e-03) 

2.9890e-03 
(7.086e-01) 

9.6648e-05 
(2.331e-09) 

1.7984e-02 
(6.834e-03) 

6.9921e-06 

(4.56e-05) 
+ 

f8 
 

100 5×106 -4.0572e+04 
(9.481e-06) 

-4.18783e+04 
(1.129e-04) 

-4.18774e+04 
(4.227e-05) 

-4.03386e+04 
(2.349e-05) 

-4.18983e+04 

(6.98e-06) 
+ 

f9 100 5×106 1.7382e-01 
(4.093e-02) 

9.24702e-21 
(4.324e-21) 

7.32562e-04 
(2.781e-05) 

5.92381e-03 
(3.779e-04) 

1.7728e-22 

(3.838e-23) 
+ 

f10 
 

100 5×106 1.7725e-12 
(2.489e-13) 

8.85280e-17 
(7.638e-14) 

3.71596e-09 
(9.328e-08) 

3.47432e-10 
(7.146e-09) 

3.52742e-17 

(1.365e-15) 
+ 

f11 
 

100 5×106 2.5361e-02 
(7.2281e-03) 

3.67528e-14 
(6.932e-14) 

1.56794e-13 
(3.6433e-09) 

8.92369e-11 
(8.157e-15) 

4.11464e-15 

(6.02e-16) 
+ 

f12 
 

100 5×106 4.2042e-10 
(6.955e-11) 

4.45366e-19 

(3.634e-16) 

2.75934e-09 
(8.359e-06) 

6.86492e-04 
(8.035e-03) 

8.00496e-19 
(4.82e-17) 

. 

f13 
 

100 5×106 -1.142822e+00 

(9.472e-06) 

-1.142822e+00 

(1.342e-03) 

-1.00864e+00 
(1.44e-05) 

-1.10967e+00 
(8.345e-01) 

-1.142823e+00 

(9.032e-05) 
NA 

 

f14 2 5×106 9.9800390e-01 

(7.228e-16) 

9.9800390e-01 

(2.673e-16) 

9.9800400e-01 
(9.373e-09) 

9.9800390e-01 

(1.138e-16) 

9.9800390e-01 

(1.15e-18) 
NA 

 
f15 4 5×106 3.706461e-04 

(1.551e-06) 
3.7041849e-04 

(4.837e-10) 

3.706851e-04 
(2.558e-05) 

4.156548e-04 
(2.981e-04) 

3.7041849e-04 

(2.11e-09) 
NA 

 
f16 2 5×106 -1.031630e+00 

(7.236e-11) 

-1.031630e+00 

(3.668e-11) 

-1.031628e+00 
(4.538e-08) 

-1.031630e+00 

(2.548e-09) 

-1.031630e+00 

(1.749e-10) 
NA 

 

f17 2 5×106 3.9788231e-01 
(2.683e-06) 

3.9788170e-01 

(1.260e-08) 

3.9788794e-01 
(7.638e-06) 

3.9788396e-01 
(6.039e-06) 

3.9788170e-01 

(8. 544e-04) 
NA 

 

f18 2 5×106 3.000000e+00 3.000000e+00 3.000000e+00 3.000000e+00 3.000000e+00 NA 
f19 2 5×106 -1.015306e+00 

(2.453e-06) 
-1.015314e+01 

(8.071e-07) 
-1.015058e+01 

(1.593e-06) 
-1.014888e+01 

(5.568e-01) 
-1.015323e+01 

(7.341e-08) 
+ 

f20 2 5×106 -1.040236e+01 
(3.116e-06) 

-1.040293e+01 
(7.974e-10) 

-1.040125e+01 
(1.944e-05) 

-1.040089e+01 
(3.00e-08) 

-1.040295e+01 

(5.923e-04) 
. 

f21 2 5×106 -1.053427e+01 
(1.593e-08) 

-1.053641e+01 

(6.049e-07) 

-1.053669e+01 
(1.446e-03) 

-1.023386e+01 
(9.638e-02) 

-1.053641e+01 

(3.90e-08) 
NA 

 

Mean Best Value  
(Standard Deviation) 

       
Func 

 
  
D 

 

Max 
FEs 

CPSO-H 
IPOP-CMA-

ES 
MA-S2 

G3 with 
PCX 

DEGL/ 
SAW 

(Cr = 0.9) 

DEGL/ 
SAW 

(Cr = 1) 

 
Statistical 

Significance 
CF1 10 5×106 5.24167e+02 

(1.046e+01) 
3.83592e+02 

(1.236e+02) 

1.98661e+03 
(2.123e+02) 

1.847894e+03 
(3.353e+02) 

6.19227e+02 
(6.8341e+01) 

5.03826e+02 
(4.0995e+01) 

+ 

CF2 10 5×106 9.23762e+02 
(6.718e+01) 

6.82114e+02 
(1.8469e+01) 

1.53459e+03 
(1.133e+02) 

1.49463e+04 
(7.846e+02) 

7.60543e+02 
(9.7837e+01) 

4.18542e+02 

(8.9984e+01) 
+ 

CF3 10 5×106 7.58269e+02 
(9.462e+02) 

5.12504e+02 
(2.586e+02) 

7.16728e+02 
(2.836e+02) 

1.91423e+03 
(2.643e+02) 

6.74823e+02 
(5.8471e+01) 

4.76239e+02 

(3.7842e+01) 
+ 
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(a) Step Function (f6)                                                                  (b) Generalized Rastrigin’s Function (f9)     
 
 
                    
 

 

 

 

 

 

 

 

 

 

 

 

 
 
(c) Generalized Ackley’s Function (f10)                                      (d) Generalized Griewnk’s Function (f11) 
 
                                                                                             

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
(e) Composite Function CF1                                                         (f) Composite Function CF2 
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       (g) Composite Function CF3 

 

Fig. 9. Convergence characteristics for median run of five algorithms over seven difficult benchmark functions. 
 
Figure 9 reveals that for Ackley (f10), Rastrigin (f9), and Griewank (f11), as well as  harder composite 
functions CF1 and CF2, initially  CPSO-H and IPOP-CMA-ES converge at the quickest rate among all 
the algorithms. However, in the neighborhood of the global optima, DEGL/SAW overtakes both of 
them,  attaining greater final accuracy. The composite function CF1 appears as an exception to this 
trend (that is also exhibited by the convergence graphs of other functions, which were omitted to save 
space), where the convergence rate of CMA-ES remained higher than DEGL/SAW until the maximum 
number of FEs were reached.  
 

6.4 Comparative Performance over Real-life Optimization Problems 

 
This section investigates the performance of the six competitive DE-variants over two real-world 
optimization problems viz. the spread spectrum radar poly-phase code design problem and the sound 
frequency modulator synthesis problem. Both problems have been briefly described earlier in Section 
5.2.  
 

In Table 14, we show the mean and the standard deviation (within parentheses) of the best-of-run 
values for 30 independent runs of each of the six algorithms over the two most difficult instances of the 
radar poly-phase code design problem (for dimensions D = 19 and D = 20). Table 15 reports the results 
of the same experiments performed over the FM synthesizer problem. Figures 9 and 10 graphically 
present the rate of convergence of the DE-variants for these two problems (graphs in Figure 9 have 
been shown for 20 dimensions for the radar code design problem). The 8-th column in Table 14 and 
the 7-th column in Table 15 indicate the statistical significance level obtained from a paired t test 
between the best and the next-to-best performing algorithms in each case. 
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Table 14. Average and standard deviation (in parentheses) of the best-of-run solutions for 30 runs over the spread 
spectrum radar poly-phase code design problem (number of dimensions D = 19 and D = 30). For all cases each 

algorithm was run up to 5×106 FEs. 

 
Table 15. Average and standard deviation (in parentheses) of the best-of-run solutions for 50 runs of six 

algorithms on the frequency modulator synthesis problem. Each algorithm was run for 105 FEs. 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Fig.10. Progress to the optimum solution for spread spectrum radar poly-phase code problem (D = 20).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.11. Progress to the optimum solution for the FMS problem. 

Mean best-of-run solution 
( Std Dev) 

 

 

D DE/rand/1 
/bin 

DE/target-to-
best/1/ 

bin 

DE/rand/1/ 
either-or 

SADE [28] NSDE [31] 
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Tables 14 and 15 show that DEGL/SAW outperforms all the other DE-variants in terms of final 
accuracy over two instances of the radar poly-phase code design problem as well as the FMS problem.  
 

6.5 Selection of the Neighborhood Size 

 
The proper selection of the neighborhood’s size (equal to 12 +k , where k is the neighborhood radius) 
in DEGL affects the trade-off between exploitation and exploration.  For solving any given 
optimization problem, this selection  remains an open problem. In practice, it is up to the practitioner 
and it is based solely on his/her experience. Some empirical guidelines may, however, be provided 
based on the fact that if the neighborhood size is large (near the population size), then because of the 
overlapping of the neighborhoods of successive vectors, neighborhood-best of a number of vectors can 
be similar to the globally best vector in the entire population. This again increases the attraction of 
most of the vectors towards a specific point in the search space and results in loss of the explorative 
power of the algorithm. Our experiments suggest that a neighborhood size that is above 40% of the 
population size makes the performance of DEGL comparable to that of the DE/target-to-best/1/bin. 
Again too small a neighborhood runs the risk of losing diversity of the population, as the difference 
vector in the local mutation model (equation (14)) may become too small. This is due to the fact that 
the vectors belonging to a small neighborhood may quickly become very similar to each other. We 
empirically observe that for DNP ⋅= 10 , the overall performance of the algorithm is not very sensitive 
to the neighborhood size varying between 10% and 20% of NP. Other choices for the population size 
NP and the corresponding radius of the neighborhood are topics of future research.  
 
Below we provide the overall success rate of the DEGL/SAW algorithm for neighborhood size varying 
from 5% to 70% of NP, over 100-dimensional multi-modal functions f10 and f11. Since both the 
functions have their optima at the origin (0), we plot the percentage of runs that successfully yielded a 

final accuracy below 1510− for different neighborhood sizes. We relaxed the threshold objective 

function value  from 2010− , so that at least one run of DEGL for all neighborhood sizes  may converge 
below the threshold value.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 12. Variation of the overall success rate of DEGL/SAW with increasing neighborhood size (for 100-
dimensional functions f10  and f11). Neighborhood sizes are indicated in the legend. 

 
Thorough experimentation with  all the test problems shows that a neighborhood size of around 10% 
provides reasonably accurate results with high success rates over most of the benchmark problems 
covered here. 
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 6.6 Correlation Between the Neighborhood Size and Weight Factor 

 
Both the neighborhood size and the weight factor w are related to the balancing of the explorative and 
exploitative tendencies of DEGL. Establishment of any theoretical correlation between these two 
parameters remains an interesting problem for future research. In this section we provide a discussion 
on such correlation, based on our empirical results on the benchmark functions.   
 
If we keep w constant throughout, then for neighborhood sizes ( 12 +k , where k is the neighborhood 
radius) varying between approximately 15% to 25% of NP, reasonably good accuracy is achieved with  

55.045.0 << w over most of the uni- and multi-modal benchmarks.  Larger values of w in [0.7, 1.0], 
result in marginally better results compared to  DE/target-to-best/1/bin but comparable or worse than 
one or more DE-variants tested here. However, for still smaller neighborhood size varying between 5% 
to 15% of NP, the optimal range of w for best accuracy is observed in [0.6, 0.75]. For  neighborhood 
sizes  roughly above 65% of the population size NP none of the time-varying weight factor schemes 
(described in Section 4.4) provided significant improvement of DEGL over DE/target-to-best/1/bin. 
This is expected because when the neighborhood size approaches the population size, the global and 
local mutation models do not differ significantly with respect to their best vectors and the role of 
weight factor becomes less prominent.  
 
In the case when w is made self-adaptive, if the neighborhood-size is below 30% of NP, DEGL 
exhibits an evolutionary learning strategy that initially promotes exploration of the feasible search 
volume, but during the later stages of search favors exploitation and thus aids quick convergence to the 
global optimum. This trend has also been shown in Figure 6 for various benchmark functions. 
However, we observe that if the neighborhood size is increased beyond 30%, the evolutionary learning 
gradually becomes erratic and for neighborhood sizes beyond 60% of NP, the self-adaptive 
characteristics of w become almost random over generations for most of the benchmarks. This 
tendency has been shown in Figure 13 for the generalized Ackley’s function f10. This figure indicates 
that if the neighborhood size approaches NP, the adaptation mechanisms  of w can hardly guide the 
search . We intend to investigate these facts more thoroghly in a future communication.  
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

 

 

 

Fig.13. Self-adaptation characteristics of the best vector of the DEGL/SAW scheme on the generalized Ackley’s 
function (f10) for different neighborhood sizes. 
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7. Conclusions and Future Work 
 

In this study we proposed a hybrid DE-type mutation/recombination operator that is a linear 
combination of two other mutation/recombination operators (an explorative and an exploitive 
operator), in an attempt to balance their effects. The new operator depends on a user-defined weight 
factor w . To circumvent the problem of determining a proper value of w  for each problem, we 
proposed six different schemes for selecting and tuning this parameter. Among these, the self-adaptive 
weight scheme performed best on most of the benchmark functions tested.  
 
The neighborhood-based DE mutation, equipped with self-adaptive weight factor, attempts to make a 
balanced use of the exploration and exploitation abilities of the search mechanism and is therefore 
more likely to avoid false or premature convergence in many cases. An extensive performance 
comparison with five significant DE variants and four other state-of-the-art evolutionary optimization 
techniques indicated that the proposed approaches enhance DE’s ability to accurately locate solutions 
in the search space. The use of the self-adaptive mutation scheme can lead to reliable optimization 
since it alleviates the problems generated by poor trade-off between the explorative and exploitative 
tendencies of the algorithm, such as decreased rate of convergence, or even divergence and premature 
saturation. 
 
This, however, does not lead us to claim that the DEGL family of algorithms may outperform their 
contestants over every possible objective function since it is impossible to model all possible 
complexities of real-life optimization problems with the limited test-suite that we used for testing the 
algorithms. In addition, the performance of the competitor DE variants may also be improved by 
blending other mutation strategies with judicious parameter tuning, a topic of future research.  The 
conclusion we can draw at this point is that DE with the suggested modifications can serve as an 
attractive alternative for optimizing a wide variety of objective functions.  
 

The present work can be extended in several directions. Future research may focus on providing some 
empirical or theoretical guidelines for selecting the neighborhood size over different types of 
optimization problems. The effect of other neighborhood topologies (star-shaped, wheel-shaped, fully 
connected, etc.) on the performance of DEGL should be investigated theoretically.  It would be 
interesting to study the performance of the DEGL family when the various control parameters (NP, F, 
and Cr) are self-adapted following the ideas of the SADE algorithm [28]. 
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